How one pest adapted to life in the dark

In a report published in the online open access journal Frontiers in Zoology, scientists reveal that this beetle has lost photoreceptors that are sensitive to blue wavelengths.

The red flour beetle (Tribolium castaneum) is a common pest that attacks milled grain products such as flour and cereals. It is a cryptozoic insect, meaning that it lives in the dark. Markus Friedrich from Wayne State University in Detroit, along with colleagues from St Louis and Cincinnati, performed genetic analyses to probe the evolution of the species’ vision.

The opsin gene family is central to vision. The authors found that the beetle’s compound eye retina lacked the blue-opsin encoding photoreceptors. Their work also identified the red flour beetle as the first example of an insect species that switches on two opsin genes across the entire retina. This co-expression of genes violates the ‘one receptor rule’ of sensory cells.

The research suggests that the beetle may have gained an evolutionary advantage through this adaptation. Dr Friedrich states that the work “raises the possibility that opsin co-expression is of advantage under conditions where brightness sensitivity is critical.”

The study points the way to broader studies of the development and biology of this pest species. It also suggests that the red flour beetle may be a promising subject for further investigation of cryptozoic animals’ evolution.

Media Contact

Charlotte Webber alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors