Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochips on guard of health

17.12.2007
Researchers of the Institute of Molecular Biology, Russian Academy of Sciences, have been working for more than 20 years on designing biological microchips for efficient and quick diagnostics of tuberculosis and other diseases.

The BIOCHIP-IMB company was set up at the Institute for production of domestic microchips. During the press-tour on November 15, 2007, the researchers told journalists about progress and achievements. The project of the laboratory of biological microchips at the Institute of Molecular Biology (Russian Academy of Sciences ) is one of the winners at the contest of projects on the “Living Systems” priority direction of the Federal Target Program guided by the Federal Agency for Science and Innovations (Rosnauka).

“The main property of biological microchips is massive parallel analysis of biological material”, explains Dmitry Gryadunov, researcher of the laboratory. The biochip per se is the glass upon which multiple microcells are located, each of the cells being a miniature analogue of a test-tube, where the reaction is taking place. The cells contain the DNA-probes, each of them being able to recognize any section of the patient’s DNA. Biological material – a drop of blood or other bioliquid – is applied at the glass, and interaction occurs in microcells between the DNA-probe and the DNA section complementary to it – that is hybridization: they match each other like the key and the lock. If the reaction has taken place, luminescence occurs in the cell, the luminescence can be discovered with the help of the “Chipdetector” analyzer device.

The very first biochip was developed by the researchers of the Institute of Molecular Biology for detection of various forms of tuberculosis. Insidious mycobacteria mutate very quickly and become immune to drugs. To understand how the patient should be treated, it is necessary to know precisely which mutant form of pathogene the patient is infected with. For this purpose, biochip is simply indispensable as instead of multiple lengthy analysis it gives the opportunity to find out the answer at once via a single analysis. The DNA-probes reveal peculiarities of mycobacteria’s DNA.

“The price per analysis with the help of our biochips is about 500 Rubles, and this is several times less than that of foreign analogues, says Victor Barsky, Director General, BIOCHIP-IMB, Doctor of Biology. Now, we are producing 1,500 to 2,000 biochips per month, but in the future we are planning to pass on to 3 to 4 thousand per month. However, the demand for this diagnostics method is much higher.” Besides tuberculosis biochips, the researchers have also created other kinds of diagnostic biochips. They help to discover chromosomal abnormalities in case of different types of leucosis, to analyze varieties of influenza viruses, including, bird flu, to detect pathogens of herpes, hepatite ?, mycoplasma, cytomegalovirus with pregnant women and new-borns, predisposition to oncological diseases, including, breast cancer and cardiovascular diseases, to identify the blood groups and to reveal various drugs intolerance. Not all of the above-mentioned biochips have been certified. As Victor Barsky explains, it is particularly difficult to certify predisposition identification biochips: even provided the individual has predisposition, he/she may or may not fall ill. Therefore, tremendous statistics should be collected so that this method could be applied in clinics. So far, it is applied along with others to confirm the diagnosis.

In Russia, tuberculosis biochips are applied in 20 tuberculosis centers. Employees of these centers take method learning at the Institute. Partners and customers of the Institute of Molecular Biology are the Institute of Virology (Russian Academy of Medical Sciences), French hospital in Toulouse (the hepatite C biochip production is being developed with French colleagues), biochips and devices for analysis are delivered to Belarus, Ukraine, Kirgizia, South Korea, Brazil, and they are passing clinical trials in the USA.

The excursion to the laboratory of biological microchips was carried out by Alexander Zasedatelev, Deputy Director of the Institute, Doctor of Biology. Before entering the sterile zone for biochip production, the journalists put on disposable smocks, caps and shoe covers. The biochip “stuffing” – DNA-probes – is being produced here. In a different manufacturing premise, robots are working round the clock, without rest to methodically apply these probes into microcells under the computer control. It is good that the most laborious and lengthy part of work can be trusted to robots! However, all production is man-checked on a special device with a monitor. And after that, the biochips that have passed the checkup can be entrusted with diagnostics of human diseases. In contrast to physicians, they make no mistakes.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Analysis Applied Biochip Biology DNA-Probe Diagnostic Production Tuberculosis microchips

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>