Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why the Switch Stays On

NC State Scientists Discover Reasons Behind Cancerous Cellular Interactions

Cellular processes, such as when to multiply, are often regulated by switches that control the frequency and timing of interactions between proteins. North Carolina State University scientists have discovered the way in which a specific protein-protein interaction prevents the cell from turning one of its switches off, leading to uncontrolled cell proliferation – one of the hallmarks of cancer.

In a paper published in the December 2007 edition of the Cell Press journal Structure, the NC State researchers show for the first time that the interaction between a rogue version of a specific protein called Ras and its binding partner protein Raf can block the switch from being turned off.

The paper shows, says Dr. Carla Mattos, NC State associate professor of structural and molecular biochemistry and the lead author of the paper, that Raf secures one of the two so-called switch regions in Ras, so that the second switch can act like a closed door that isolates the key area where the overall signal switch is located. Mattos likens the abnormal protein-protein interaction to having the light permanently stuck on because the switch is inaccessible behind the closed door.

... more about:
»Mattos »Mutation »Ras »acid »amino »amino acids »proliferation

In the world of molecular biochemistry, Mattos explains, instructions for the proliferation of cells are given by cascades of protein-protein interactions controlled by on-off switches. The switch is on when the proteins can interact – resulting in cell proliferation – and off when they cannot. If access to the switch is blocked and the switch is stuck on, cells begin to multiply incessantly.

There are 20 existing amino acids that can be joined into chains that make up proteins. Each protein has a unique sequence of amino acids. In the chain of 189 amino acids of which Ras is composed, the position in question is at the 61st amino acid, which is normally a glutamine known to help in turning the interaction switch off. Change, or mutation, of this amino acid to an amino acid called leucine is a commonly observed defect in cancer cells.

"The switch only gets stuck on when Raf is present and the defective Ras has position 61 as a leucine or one of the few amino acids shown to cause cell transformation, one of the properties observed in cancer," Mattos says. "For glutamine or the mutations that do not cause cell transformation, the molecular door can fly open and allow access to the switch – even when Raf is bound to Ras. The door can always open in the absence of Raf."

The paper responds to a paradox that arose in the 1980s when scientists compared the behavior of Ras mutants in cells versus in solution, isolated from other cellular components including Raf. The studies of Ras in solution suggested nothing special about the mutations that cause cell transformation versus those that do not, as any amino acid other than glutamine at position 61 made turning off the Ras switch only 10 times slower, rather than blocking the switch. Scientists did not understand why the isolated Ras mutants behaved differently than the Ras mutants in their cellular environment.

Mattos, research associate Greg Buhrman and undergraduate student Glenna Wink provide the answer to this paradox by showing that the switch stays on when Raf binds Ras containing the leucine mutation and that it can be turned off in the absence of Raf, although not at the normal rate. In normal Ras the switch can be turned off either in the presence or absence of Raf. The atomic resolution structures of the rogue Ras proteins with strongly transforming mutations show that they all keep the molecular door closed and the switch on in the same way. The structures of the normal Ras and of a mutant known to have weak transforming ability both have the molecular door open.

"We all knew that there had to be something in the cell not accounted for by the studies in isolated Ras," Mattos says. "We now know that at least part of that something is the Raf protein. When the defective Ras encounters Raf, the switch becomes inaccessible and the highly controlled cell proliferation system is broken, leading to uncontrolled cell proliferation and cancer."

The study was funded by the National Institutes of Health.

Dr. Carla Mattos | EurekAlert!
Further information:

Further reports about: Mattos Mutation Ras acid amino amino acids proliferation

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>