Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making gas out of crude oil

14.12.2007
Biological process of heavy oil degradation by microbes detailed by researchers

An international team that includes University of Calgary scientists has shown how crude oil in oil deposits around the world – including in Alberta’s oil sands – are naturally broken down by microbes in the reservoir.

Their discovery – published in the prestigious science journal Nature – could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource.

Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team.

The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface.

“The main thing is you’d be recovering a much cleaner fuel,” says Larter, Canada Research Chair in Petroleum Geology. “Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldn’t need all the upgrading facilities and piping on the surface.”

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.

Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil & Energy in Norway, report in Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and don’t use oxygen.

“This is the main process that’s occurring all over the Earth, in any oil reservoir where you’ve got biodegradation,” Larter says.

Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of ‘feeding’ the microbes and rapidly accelerating the breaking down of the oil into methane.

“Instead of 10 million years, we want to do it 10 years,” Larter says. “We think it’s possible. We can do it in the laboratory. The question is: can we do it in a reservoir"”

Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground.

Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. “It gives us a better understanding of why the fluid properties are varying within the reservoir,” Larter says. “That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage).”

The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere.

The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. “It is likely there will be field tests by 2009.”

Mark Lowey | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.nature.com/index.html

Further reports about: Larter Petroleum Reservoir biodegradation crude microbes

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>