Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making gas out of crude oil

14.12.2007
Biological process of heavy oil degradation by microbes detailed by researchers

An international team that includes University of Calgary scientists has shown how crude oil in oil deposits around the world – including in Alberta’s oil sands – are naturally broken down by microbes in the reservoir.

Their discovery – published in the prestigious science journal Nature – could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource.

Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team.

The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface.

“The main thing is you’d be recovering a much cleaner fuel,” says Larter, Canada Research Chair in Petroleum Geology. “Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldn’t need all the upgrading facilities and piping on the surface.”

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.

Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil & Energy in Norway, report in Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and don’t use oxygen.

“This is the main process that’s occurring all over the Earth, in any oil reservoir where you’ve got biodegradation,” Larter says.

Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of ‘feeding’ the microbes and rapidly accelerating the breaking down of the oil into methane.

“Instead of 10 million years, we want to do it 10 years,” Larter says. “We think it’s possible. We can do it in the laboratory. The question is: can we do it in a reservoir"”

Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground.

Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. “It gives us a better understanding of why the fluid properties are varying within the reservoir,” Larter says. “That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage).”

The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere.

The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. “It is likely there will be field tests by 2009.”

Mark Lowey | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.nature.com/index.html

Further reports about: Larter Petroleum Reservoir biodegradation crude microbes

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>