Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Replacing corn with perennial grasses improves carbon footprint of biofuels

03.12.2008
Converting forests or fields to biofuel crops can increase or decrease greenhouse gas emissions, depending on where – and which – biofuel crops are used, University of Illinois researchers report this month.

The researchers analyzed data from dozens of studies to determine how planting new biofuel crops can influence the carbon content of the soil. Their findings appear in the journal Global Change Biology Bioenergy.

Plants use the sun’s energy to convert carbon dioxide from the atmosphere into the organic carbon that makes up leaves, stems and other plant parts. As plants decay, this carbon goes into the soil. Organic carbon is an important component of soil health and also influences atmospheric carbon dioxide levels. Whenever the soil is disturbed, as occurs when land is plowed or cleared of vegetation, some of this carbon returns to the atmosphere in the form of carbon dioxide.

“From the time that John Deere invented the steel plow, which made it possible to break the prairie sod and begin farming this part of the world, the application of row crop agriculture to the Midwest has caused a reduction of soil carbon of about 50 percent,” said Evan DeLucia, a professor of plant biology at Illinois and corresponding author on the new study.

Any debate on the environmental consequences of using plants to produce liquid fuels should also consider how each option affects soil carbon, DeLucia said. “The biggest terrestrial pool of carbon is in the soil. The top meter of soil holds more than three times the amount of carbon stored in either vegetation or the atmosphere, so if you do little things to change the amount of carbon in the soil it has a huge impact on the atmosphere and thus global warming.”

Unlike corn, which must be replanted every year, perennial grasses such as switchgrass and Miscanthus preserve and increase carbon stores in the soil. These and other grasses have been proposed as high-energy alternative feedstocks for biofuel production.

Currently, ethanol is produced by fermenting the starch in corn kernels, but significantly more liquid fuel energy can be harvested from the stems and leaves of plants. The technology for producing this “cellulosic” ethanol is still quite expensive, but many believe that it will displace corn ethanol as the technology advances.

About 20 percent of the corn crop currently goes into ethanol production in the U.S., DeLucia said, “so we began with the hypothesis that it might be good for soil carbon to put a perennial biofuel crop on the landscape instead of corn.”

The researchers analyzed published estimates of changes in soil organic carbon in landscapes converted from natural or agricultural land to biofuel crops. They focused on corn, sugar cane, Miscanthus, switchgrass and native prairie grasses. They also evaluated the impact of harvesting and using corn stover (the plant debris left over after corn is harvested) as a cellulosic biofuel source.

Their analysis showed that converting native land (grassland or forest) to sugarcane dramatically reduced soil carbon, creating a carbon deficit that would take decades to repay. While perennial grasses add carbon to the soil each year, DeLucia said, it could take up to a century for the sugar cane to rebuild soil carbon to former levels on native land.

Harvesting the corn residue for cellulosic ethanol production also reduced the carbon in the soil. The more plant residue was removed, the more the soil carbon declined.

Planting perennial grasses on existing agricultural lands had the most beneficial effect on soil carbon, the researchers found. Although there was an initial drop in carbon as fields were converted from corn to Miscanthus, switchgrass or native perennial grasses, the loss was fairly quickly offset by yearly gains in soil carbon as the grasses became established.

“Consistent with our hypothesis, the perennial feedstocks like Miscanthus and switchgrass start building soil carbon very, very early on,” DeLucia said.

“From a purely carbon perspective, our research indicates that putting perennial biofuel crops on landscapes that are dominated by annual row crops will have a positive effect on soil carbon.”

The finding “seems to walk you right into the food-for-fuel debate,” DeLucia said, referring to the controversy over using agricultural land for fuel production. But because the U.S. is already devoting about 20 percent of its corn crop to ethanol production, he said, it would make sense to eventually use that land to produce a much higher yielding biofuel feedstock that has the added benefit of increasing organic carbon in the soil.

DeLucia and his colleagues will present their findings this month at the 2008 Fall Meeting of the American Geophysical Union.

DeLucia also is an affiliate of the Institute for Genomic Biology and the Energy Biosciences Institute at Illinois.

Diana Yates | University of Illinois
Further information:
http://news.illinois.edu/news/08/1202soilcarbon.html
http://www.illinois.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>