Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New regulator discovered for information transfer in the brain

20.06.2013
The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations have been published in the scientific journal “Neuron”.

Synapses are the most important sites of information transfer between neurons. The functioning of our brain is based on the ability of the synapses to release neurotransmitter substances in a fraction of a second, so that neuronal signals can be rapidly propagated and integrated.


Neuron with synaptic contacts.
(Image: Biozentrum)

Peter Scheiffele’s team has now identified a new mechanism, which ensures that synaptic vesicles, the carrier of the transmitter substances, are concentrated at their designated place, thereby contributing to rapid signal transmission.

mSYD1 as organizer of synaptic structures
The speed and precision of synaptic transmission is based on a highly complex protein apparatus in the synapse. A concentration of synaptic vesicles is found at the synaptic contact sites between neurons. When a nerve cell is activated, vesicles fuse with the edge of the synapse, the so-called active zone, and send neurotransmitters to the neighboring cells.

Peter Scheiffele’s research group has now identified a previously unknown protein called mSYD1, which regulates the deposition of the vesicles at the active zone. In nerve cells, in which no mSYD1 protein is present, synaptic contacts continue to be formed but the accumulation of the synaptic vesicles at the active zone is disrupted. This results in a significant reduction of synaptic transmission.

Inactive mSYD1 in autistic disorders
These findings provide important new insights into the mechanisms underlying the formation of functional neuronal networks. In patients with a developmental disorder belonging the autism spectrum, mSYD1 is one of a group of genes that are inactivated. In further investigations, the research group is now looking at how the inactivation of mSYD1 affects the behavior of mice, in order to gain insights into the fundamental neuronal defects associated with autism.

Original Citation
Corinna Wentzel, Julia Sommer, Ramya Nair, Adeline Stiefvater, Jean-Baptiste Sibarita, and Peter Scheiffele (2013)
mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking.
Neuron; Published online June 19, 2013.

Further Information
Prof. Dr. Peter Scheiffele, Biozentrum, University of Basel, phone: +41 61 267 21 94, Email: peter.scheiffele@unibas.ch

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

Uncovering decades of questionable investments

18.01.2018 | Business and Finance

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>