Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Platinum

13.01.2012
Electrochemical dissolution of platinum in an ionic liquid

Precious metals, especially platinum, are important catalytic materials for many chemical reactions. For example, platinum is used in some fuel cells; however, broad commercialization of such fuel-cell technology is hampered by the fact that platinum is rare and thus far too expensive.

Growing demand is making it necessary to develop efficient and environmentally friendly processes for recycling platinum. Jing-Fang Huang and Hao-Yuan Chen at the National Chung Hsing University in Taiwan have now introduced a new approach in the journal Angewandte Chemie. Their method is based on the dissolution of the metal in an ionic liquid.

Recycling platinum is a difficult, complicated process. The first step is the dissolution of the used platinum. Because platinum is a very special precious metal, this isn’t so easy. The solvents used for this are usually highly corrosive aqua regia, a mixture of nitric and hydrochloric acids, or a highly oxidizing mixture of sulfuric acid and hydrogen peroxide known as piranha. There are also electrochemical recycling processes, but these mostly require highly toxic electrolytes or corrosive media, or they release toxic gases. They also suffer from insufficient current densities and passivation of the electrodes.

Huang and Chen have now developed a novel process that avoids all of these disadvantages. In this procedure, platinum is electrochemically dissolved in a mixture of zinc chloride and a special ionic liquid. An ionic liquid is an organic salt that is in a melted state at temperatures below 100 °C. Ionic liquids are considered environmentally friendly solvents because they have very low vapor pressures and are very thermally stable, so they do not release any toxic substances. They also have high ionic conductivity, which makes them very useful in electrochemical applications.

The used platinum is introduced in the form of an electrode, a voltage is applied, and the surrounding ionic liquid heated to about 100 °C. The platinum then dissolves surprisingly fast. The dissolved platinum can then be removed on a carrier electrode, either as the pure metal or as a zinc alloy, without prior treatment of the solution. The scientists are optimistic that this process can also be adapted for other precious metals.

Says Huang: “We are doing our best to solve the problem about the effective use of precious metals. The recycling of precious metals is a possible strategy. Even now, we do not think we have found the best process. We will continuously modify the process in order to extend its applications or look for a much better one”.

About the Author
Dr. Jing-Fang Huang is an Associate Professor of Chemistry at National Chung Hsing University in Taiwan. His main specialties are electrochemistry, sensor and energy. He is also interested in the development of ionic liquid with potential applications in the synthesis of functional materials, sensors, and fuel cells.
Author: Jing-Fang Huang, National Chung Hsing University (Taiwan, ROC), http://www.nchu.edu.tw/chem/jfhuang.htm
Title: Heat-Assisted Electrodissolution of Platinum in an Ionic Liquid
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107997

Jing-Fang Huang | Angewandte Chemie
Further information:
http://www.nchu.edu.tw/chem/jfhuang.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>