Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Platinum

13.01.2012
Electrochemical dissolution of platinum in an ionic liquid

Precious metals, especially platinum, are important catalytic materials for many chemical reactions. For example, platinum is used in some fuel cells; however, broad commercialization of such fuel-cell technology is hampered by the fact that platinum is rare and thus far too expensive.

Growing demand is making it necessary to develop efficient and environmentally friendly processes for recycling platinum. Jing-Fang Huang and Hao-Yuan Chen at the National Chung Hsing University in Taiwan have now introduced a new approach in the journal Angewandte Chemie. Their method is based on the dissolution of the metal in an ionic liquid.

Recycling platinum is a difficult, complicated process. The first step is the dissolution of the used platinum. Because platinum is a very special precious metal, this isn’t so easy. The solvents used for this are usually highly corrosive aqua regia, a mixture of nitric and hydrochloric acids, or a highly oxidizing mixture of sulfuric acid and hydrogen peroxide known as piranha. There are also electrochemical recycling processes, but these mostly require highly toxic electrolytes or corrosive media, or they release toxic gases. They also suffer from insufficient current densities and passivation of the electrodes.

Huang and Chen have now developed a novel process that avoids all of these disadvantages. In this procedure, platinum is electrochemically dissolved in a mixture of zinc chloride and a special ionic liquid. An ionic liquid is an organic salt that is in a melted state at temperatures below 100 °C. Ionic liquids are considered environmentally friendly solvents because they have very low vapor pressures and are very thermally stable, so they do not release any toxic substances. They also have high ionic conductivity, which makes them very useful in electrochemical applications.

The used platinum is introduced in the form of an electrode, a voltage is applied, and the surrounding ionic liquid heated to about 100 °C. The platinum then dissolves surprisingly fast. The dissolved platinum can then be removed on a carrier electrode, either as the pure metal or as a zinc alloy, without prior treatment of the solution. The scientists are optimistic that this process can also be adapted for other precious metals.

Says Huang: “We are doing our best to solve the problem about the effective use of precious metals. The recycling of precious metals is a possible strategy. Even now, we do not think we have found the best process. We will continuously modify the process in order to extend its applications or look for a much better one”.

About the Author
Dr. Jing-Fang Huang is an Associate Professor of Chemistry at National Chung Hsing University in Taiwan. His main specialties are electrochemistry, sensor and energy. He is also interested in the development of ionic liquid with potential applications in the synthesis of functional materials, sensors, and fuel cells.
Author: Jing-Fang Huang, National Chung Hsing University (Taiwan, ROC), http://www.nchu.edu.tw/chem/jfhuang.htm
Title: Heat-Assisted Electrodissolution of Platinum in an Ionic Liquid
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107997

Jing-Fang Huang | Angewandte Chemie
Further information:
http://www.nchu.edu.tw/chem/jfhuang.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>