Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Platinum

13.01.2012
Electrochemical dissolution of platinum in an ionic liquid

Precious metals, especially platinum, are important catalytic materials for many chemical reactions. For example, platinum is used in some fuel cells; however, broad commercialization of such fuel-cell technology is hampered by the fact that platinum is rare and thus far too expensive.

Growing demand is making it necessary to develop efficient and environmentally friendly processes for recycling platinum. Jing-Fang Huang and Hao-Yuan Chen at the National Chung Hsing University in Taiwan have now introduced a new approach in the journal Angewandte Chemie. Their method is based on the dissolution of the metal in an ionic liquid.

Recycling platinum is a difficult, complicated process. The first step is the dissolution of the used platinum. Because platinum is a very special precious metal, this isn’t so easy. The solvents used for this are usually highly corrosive aqua regia, a mixture of nitric and hydrochloric acids, or a highly oxidizing mixture of sulfuric acid and hydrogen peroxide known as piranha. There are also electrochemical recycling processes, but these mostly require highly toxic electrolytes or corrosive media, or they release toxic gases. They also suffer from insufficient current densities and passivation of the electrodes.

Huang and Chen have now developed a novel process that avoids all of these disadvantages. In this procedure, platinum is electrochemically dissolved in a mixture of zinc chloride and a special ionic liquid. An ionic liquid is an organic salt that is in a melted state at temperatures below 100 °C. Ionic liquids are considered environmentally friendly solvents because they have very low vapor pressures and are very thermally stable, so they do not release any toxic substances. They also have high ionic conductivity, which makes them very useful in electrochemical applications.

The used platinum is introduced in the form of an electrode, a voltage is applied, and the surrounding ionic liquid heated to about 100 °C. The platinum then dissolves surprisingly fast. The dissolved platinum can then be removed on a carrier electrode, either as the pure metal or as a zinc alloy, without prior treatment of the solution. The scientists are optimistic that this process can also be adapted for other precious metals.

Says Huang: “We are doing our best to solve the problem about the effective use of precious metals. The recycling of precious metals is a possible strategy. Even now, we do not think we have found the best process. We will continuously modify the process in order to extend its applications or look for a much better one”.

About the Author
Dr. Jing-Fang Huang is an Associate Professor of Chemistry at National Chung Hsing University in Taiwan. His main specialties are electrochemistry, sensor and energy. He is also interested in the development of ionic liquid with potential applications in the synthesis of functional materials, sensors, and fuel cells.
Author: Jing-Fang Huang, National Chung Hsing University (Taiwan, ROC), http://www.nchu.edu.tw/chem/jfhuang.htm
Title: Heat-Assisted Electrodissolution of Platinum in an Ionic Liquid
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107997

Jing-Fang Huang | Angewandte Chemie
Further information:
http://www.nchu.edu.tw/chem/jfhuang.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>