Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rearrangements of multifunctional genes cause cancer in children and young people

11.03.2009
A doctoral thesis presented at the Sahlgrenska Academy, University of Gothenburg, Sweden, shows that three genes that lie behind a number of malignant tumour diseases are normally involved in several fundamental processes in the cell. This may be the reason that the tumours arise early in life and principally affect children and young people.

A family of genes known as the "FET" genes has been investigated in the work presented in the thesis. This family contains three genes that are found in modified forms in several malignant soft-tissue tumours and several forms of leukaemia.

The FET genes are found in these tumours in the form of what are known as "fusion genes" in which parts of two different genes have merged to form one gene. Fusion genes are translated into abnormal fusion proteins, which can in certain cases transform normal cells to cancer cells.

The human body consists of many different types of specialised cell types such as nerve cells, fat cells and intestinal cells. These are formed when stem cells multiply and mature gradually along different developmental pathways. Cancer may arise if something goes wrong in this process. The study has shown that the activities of the genes in the FET family fall as the cells mature, and scientists therefore believe that these genes play a role during the early stages of cell maturation, when the cells are not far from the stem cell stage. The normal maturation pathway of a cell becomes blocked when fusion genes that contain FET genes arise. The result is a cancer cell with properties similar to those of stem cells, and such a cell can multiply in an uncontrolled manner.

"We found that the FET genes are also involved in the response of the cell to external and internal stress, and when cells spread. Alterations of such processes are common in cancer cells", says Mattias Andersson.

It normally requires damage to several different genes before cancer cells develop, and this usually takes a long time. However, since the FET genes are involved in several of the normal cell processes, scientists believe that in their rearranged form they can affect in parallel several of the control systems that prevent a normal cell from becoming a cancer cell. This may give rise to rapid development of cancer, and it may be the reason that tumours with FET fusion genes are often found in children and young people.

"Studying normal FET genes has increased our understanding of what may go wrong in cancer cells having rearrangements of these genes. This may in the long term lead to new methods of treatment for tumour diseases that contain FET fusion genes", says Mattias Andersson.

The thesis has been written by:
Mattias Andersson, MSc, telephone: +46 31 342 2928, e-mail: mattias.andersson@llcr.med.gu.se
Supervisor:
Professor Pierre Åman, telephone: +46 31 342 2842, e-mail: pierre.aman@llcr.med.gu.se
A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Biomedicine.
Title of the thesis: FET proteins in cancer and development
The thesis will be defended on Friday 6 March, at 9.00, in the lecture theatre, Patologen, Sahlgrenska University Hospital, Ehrenströmsgatan 1, Göteborg, Sweden
Ulrika Lundin, Public relations officer, Sahlgrenska Academy at the University of Gothenburg, Telephone: +46 31 786 3869, Mobile: +46 70 775 8851

e-mail: ulrika.lundin@sahlgrenska.gu.se

The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of medicine, odontology and health care sciences. About 4000 undergraduate students and 1000 postgraduate students are enrolled at Sahlgrenska Academy. The staff is about 1500 persons. 850 of them are researchers and/or teachers.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19064
http://www.gu.se/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>