Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rearrangements of multifunctional genes cause cancer in children and young people

11.03.2009
A doctoral thesis presented at the Sahlgrenska Academy, University of Gothenburg, Sweden, shows that three genes that lie behind a number of malignant tumour diseases are normally involved in several fundamental processes in the cell. This may be the reason that the tumours arise early in life and principally affect children and young people.

A family of genes known as the "FET" genes has been investigated in the work presented in the thesis. This family contains three genes that are found in modified forms in several malignant soft-tissue tumours and several forms of leukaemia.

The FET genes are found in these tumours in the form of what are known as "fusion genes" in which parts of two different genes have merged to form one gene. Fusion genes are translated into abnormal fusion proteins, which can in certain cases transform normal cells to cancer cells.

The human body consists of many different types of specialised cell types such as nerve cells, fat cells and intestinal cells. These are formed when stem cells multiply and mature gradually along different developmental pathways. Cancer may arise if something goes wrong in this process. The study has shown that the activities of the genes in the FET family fall as the cells mature, and scientists therefore believe that these genes play a role during the early stages of cell maturation, when the cells are not far from the stem cell stage. The normal maturation pathway of a cell becomes blocked when fusion genes that contain FET genes arise. The result is a cancer cell with properties similar to those of stem cells, and such a cell can multiply in an uncontrolled manner.

"We found that the FET genes are also involved in the response of the cell to external and internal stress, and when cells spread. Alterations of such processes are common in cancer cells", says Mattias Andersson.

It normally requires damage to several different genes before cancer cells develop, and this usually takes a long time. However, since the FET genes are involved in several of the normal cell processes, scientists believe that in their rearranged form they can affect in parallel several of the control systems that prevent a normal cell from becoming a cancer cell. This may give rise to rapid development of cancer, and it may be the reason that tumours with FET fusion genes are often found in children and young people.

"Studying normal FET genes has increased our understanding of what may go wrong in cancer cells having rearrangements of these genes. This may in the long term lead to new methods of treatment for tumour diseases that contain FET fusion genes", says Mattias Andersson.

The thesis has been written by:
Mattias Andersson, MSc, telephone: +46 31 342 2928, e-mail: mattias.andersson@llcr.med.gu.se
Supervisor:
Professor Pierre Åman, telephone: +46 31 342 2842, e-mail: pierre.aman@llcr.med.gu.se
A thesis presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Biomedicine.
Title of the thesis: FET proteins in cancer and development
The thesis will be defended on Friday 6 March, at 9.00, in the lecture theatre, Patologen, Sahlgrenska University Hospital, Ehrenströmsgatan 1, Göteborg, Sweden
Ulrika Lundin, Public relations officer, Sahlgrenska Academy at the University of Gothenburg, Telephone: +46 31 786 3869, Mobile: +46 70 775 8851

e-mail: ulrika.lundin@sahlgrenska.gu.se

The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of medicine, odontology and health care sciences. About 4000 undergraduate students and 1000 postgraduate students are enrolled at Sahlgrenska Academy. The staff is about 1500 persons. 850 of them are researchers and/or teachers.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19064
http://www.gu.se/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>