Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare window on spinal muscular atrophy genetics

08.04.2009
Caused by a mutation of the SMN gene, spinal muscular atrophy (SMA) is an infantile and juvenile neurodegenerative disorder where motor neuron loss causes progressive paralysis.

A new study published in the open access journal BMC Medicine details the first research focused on human muscle tissue atrophied due to a genetic condition, and sheds light on two distinct mechanisms at work in different forms of SMA.

A research team from Italy, led by Gerolamo Lanfranchi, analyzed muscle biopsies and genomic DNA from peripheral blood of four SMA I and five SMA III patients from the Neuromuscular Bank organised by Corrado Angelini at the University of Padova, to investigate which other muscle genes, other than the SMN defect, played a role in atrophy. They used microarray and quantitative real-time PCR to study at transcriptional level the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most severe, type I (infantile), and the milder type III (juvenile).

SMA type I is also known as severe infantile SMA or Werdnig-Hoffmann disease. Manifesting rapidly in infants, babies diagnosed with type I SMA do not generally live past one year of age. SMA type III represents a milder form of the disorder. It has a later onset and affected patients may be able to walk but later lose this ability.

The two forms of SMA gave distinct expression signatures. The SMA III muscle transcriptome is close to normal, whereas in SMA I gene expression is significantly altered. Genes implicated in signal transduction were up-regulated in SMA III whereas those involved in energy metabolism and muscle contraction were consistently down-regulated in SMA I.

"Our work indicates that SMA I and III muscles are in different phases: the 'prolonged' atrophic condition typical of the SMA I muscle and the coexistence of atrophy and hypertrophy in SMA III muscle," says Lanfranchi.

Previous studies have investigated transcriptional changes in mouse or rat muscle atrophied due to physiopathological conditions, but this is the first to use human tissue affected by a genetic atrophic condition.

1. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy
Caterina Millino, Marina Fanin, Andrea Vettori, Paolo Laveder, Maria Luisa Mostacciuolo, Corrado Angelini and Gerolamo Lanfranchi

BMC Medicine (in press)

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Medicine publishes original research articles, technical advances and study protocols in any area of medical science or clinical practice. To be appropriate for BMC Medicine, articles need to be of special importance and broad interest. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Charlotte Webber | EurekAlert!
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/bmcmed/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>