Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantity, not quality: Risk of sudden cardiac death tied to protein overproduction

28.05.2014

Understanding of mechanism could lead to new drug treatment

A genetic variant linked to sudden cardiac death leads to protein overproduction in heart cells, Johns Hopkins scientists report. Unlike many known disease-linked variants, this one lies not in a gene but in so-called noncoding DNA, a growing focus of disease research.

The discovery, reported in the June 5 issue of The American Journal of Human Genetics, also adds to scientific understanding of the causes of sudden cardiac death and of possible ways to prevent it, the researchers say.

"Traditionally, geneticists have studied gene variants that cause disease by producing an abnormal protein," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics, molecular biology and genetics, and biostatistics in the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins University School of Medicine. "We think there will turn out to be many DNA variants that, like this one, cause disease by making too much or too little of a normal protein."

... more about:
»DNA »Medicine »NOS1AP »cardiac »death »genes »noncoding

Chakravarti's interest in sudden cardiac death emerged a decade ago, when it claimed several of his colleagues within a few months. An expert in complex common diseases, he and his team knew that sudden cardiac death can be caused by many conditions. They focused on one: abnormalities in what is known as cardiac repolarization — the time it takes for the heart to gear up to beat again.

The team compared the genetic sequences of tens of thousands of people with their electrocardiogram (ECG) results, identifying several regions on the genome with genetic variations associated with lengthened QT interval, a measure of cardiac repolarization, in the ECG. "The problem is that most of these variants lie outside of genes, in the noncoding DNA that controls how genes are used," Chakravarti says, "so it's hard to tell what genes they're affecting."

Despite the challenge, Chakravarti and his colleagues were able to home in on one suspect region of the genome housing a gene called NOS1AP. "There were many variants grouped in this area," says Ashish Kapoor, Ph.D., a postdoctoral researcher in Chakravarti's laboratory, "so we catalogued all 200 that we found." The team then went through a process of elimination using genetically engineered, lab-grown cells and zebra fish to identify a variant in the noncoding DNA that affected how much protein was made by the nearby NOS1AP gene.

Next, they cultured rat heart cells and engineered them to overproduce NOS1AP. When the concentration of the protein rose in a particular type of heart cell called a cardiomyocyte, the cells' electrical properties changed in a way that is similar to the pattern seen in long QT syndrome.

Kapoor notes that 67 percent of the general population carries the NOS1AP-overproducing genetic variant. "We have observed that NOS1AP genetic variants are associated with sudden cardiac death whether or not they affect a particular person's QT interval, raising the risk by about 40 percent," he says.

Chakravarti notes that the results also add to scientific understanding of how the heart and QT interval work — knowledge with far-reaching implications. For example, many drugs developed for noncardiac conditions have turned out to temporarily lengthen QT interval, a side effect that only turns up after much time and money are spent on drug development. By better understanding regulation of the QT interval, researchers would be better able to predict what types of drugs could affect it.

"Hundreds of genome-wide association studies have been done to find genetic variants associated with disease, but this is one of just a handful of follow-up studies to look for the mechanism behind such a variant," Chakravarti says. "I think we've shown there's great value in asking why."

###

Link to the article: http://www.cell.com/ajhg/abstract/S0002-9297%2814%2900221-3

Other authors on the paper were Rajesh B. Sekar, Karen Fox-Talbot, Vasyl Pihur, Sumantra Chatterjee, Dan E. Arking, Marc K. Halushka and Gordon F. Tomaselli of the Johns Hopkins University School of Medicine; Nancy F. Hansen, Jim Mullikin and Eric D. Green of the National Human Genome Research Institute; Michael Morley, Jeffrey Brandimarto and Thomas P. Cappola of Perelman School of Medicine at the University of Pennsylvania; Christine S. Moravec of the Cleveland Clinic Foundation; Sara L. Pulit of the University Medical Center Utrecht; Arne Pfeufer of the Helmholtz Zentrum Munchen; Mark Ross and David Bentley of Illumina United Kingdom; Christopher Newton-Cheh of Massachusetts General Hospital; Eric Boerwinkle of the University of Texas Health Science Center; and the QT Interval-International GWAS Consortium.

This work was supported by the National Heart, Lung and Blood Institute (grant numbers RO1 HL086694 and RO1HL105993) and the Donald W. Reynolds Foundation. Affymetrix, Inc. sells products used in the study described in this article. Aravinda Chakravarti was a paid consultant to and member of the Scientific Advisory Board of Affymetrix until December 31, 2013. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. Mark Ross and David Bentley are employees of Illumina, Inc., a public company that develops and markets systems for genetic analysis.

Related stories:

Hopkins Scientists ID 10 Genes Associated With a Risk Factor for Sudden Cardiac Death: http://www.hopkinsmedicine.org/news/media/releases/Hopkins_Scientists_ID_10_Genes_Associated_With_a_Risk_Factor_for_Sudden_Cardiac_Death_

New Genes Implicated in High Blood Pressure: http://www.hopkinsmedicine.org/news/media/releases/New_Genes_Implicated_in_High_Blood_Pressure

Scientific Team Sequences 1092 Human Genomes To Determine Standard Range Of Human Genetic Variation: http://m.hopkinsmedicine.org/news/media/releases/1092_human_genomes_sequenced

Shawna Williams | Eurek Alert!

Further reports about: DNA Medicine NOS1AP cardiac death genes noncoding

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>