Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple bacteria on Earth could survive alien light

24.07.2013
University of Miami researchers show that extreme alien light could support life of terrestrial bacteria

Purple bacteria contain pigments that allow them to use sunlight as their source of energy, hence their color. Small as they are, these microbes can teach us a lot about life on Earth, because they have been around longer than most other organisms on the planet.


Purple bacteria make a "gel" around the individual cells which binds them into a colony. That is why they appear as "clouds." The insert illustrates the general principle of the model used in the study. It depicts photons arriving, then being passed around the bacteria's membrane, where the light harvesting mechanism is located, then arriving at the various reaction center 'kitchens', being processed, and then being turned out as metabolic products for the bacteria to survive.

Credit: Dr. Wayne B. Lanier

University of Miami (UM) physicist Neil Johnson, who studies purple bacteria, recently found that these organisms can also survive in the presence of extreme alien light. The findings show that the way in which light is received by the bacteria can dictate the difference between life and death.

Johnson, head of the inter-disciplinary research group in complexity in the College of Arts and Sciences at UM and his collaborators share their findings in a paper titled "Extreme alien light allows survival of terrestrial bacteria" published online in Nature's Scientific Reports. The study reveals new possibilities for life on earth and elsewhere in the universe.

"The novelty of our work is that despite all the effort aimed at finding planets outside our solar system where life might exist, people have ignored the fact that photosynthesis--and hence life on Earth-- isn't just about having the right atmosphere and light intensity," Johnson says. "Instead, as we show, a crucial missing ingredient is how the light arrives at the organism."

The results are also applicable in the scenario of our own sun developing extreme fluctuations and in a situation in which bacteria are subject to extreme artificial light sources in the laboratory.

The findings may also help with engineering a new generation of designer-light-harvesting structures.

Using a mathematical model the researchers calculated the probability of survival when the bacteria is subjected to bursts of light, similar to what might be experienced if the light source was an unstable star. The flow of light was on average the same as the bacteria would normally receive, but since they would be receiving it in such a strange way, the researchers wondered under what situations the bacteria could survive.

"It's like saying we know we need to bring home a certain amount of food per week, but what happens if all of the food is delivered in one day? You might not be able to store all of it," Johnson says. "Maybe some food would get spoiled, or maybe you wouldn't have time to use it all," he says. "The light is like food for the bacteria, and the issue is the amount of food and the timing with which you bring it in."

Light comes in packets of photons. Purple bacteria process light in places callereaction centers, where the energy of the photons fuels the production of metabolic materials. Johnson compares the situation to asking what happens when food arrives in the kitchen in an irregular way.

"The reaction center, like any kitchen, can't do a thousand things at once. They can only handle one photon at a time," Johnson says. "The new chemicals made in the process take some time to diffuse. Otherwise, it results in a buildup of chemicals that can kill the bacteria," he says. "Since we are concluding this from statistical calculations, we can say it's very unlikely that the bacteria will survive."

To their surprise, the researchers found that while many seemingly innocuous changes in the way the light arrives at the organisms end up proving fatal, the bacteria could survive a sudden deluge of photons. The key to enduring such extreme conditions is that that there are many reaction center 'kitchens.' Therefore, the photons spread out naturally, leaving each reaction center enough time to recover.

"Ultimately the chemicals have time to diffuse and that is what saves it," Johnson says. "On the average the bacteria is therefore getting what it needs from the reaction centers."

The researchers suspect this mechanism is not unique to purple bacteria. In the future, they will expand the study to other photosynthetic life forms.

Co-authors of the study are Guannan Zhao, who was a postdoctoral fellow at UM at the time of the project; Pedro Manrique and Hong Qi doctoral students at UM; Felipe Caycedo, postdoctoral fellow at Universitat Ulm, Germany; Ferney Rodriguez and Luis Quiroga, professors at Universidad de Los Andes, Bogota, Colombia.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world. http://www.miami.edu.

Annette Gallagher | EurekAlert!
Further information:
http://www.umiami.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>