Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple bacteria on Earth could survive alien light

24.07.2013
University of Miami researchers show that extreme alien light could support life of terrestrial bacteria

Purple bacteria contain pigments that allow them to use sunlight as their source of energy, hence their color. Small as they are, these microbes can teach us a lot about life on Earth, because they have been around longer than most other organisms on the planet.


Purple bacteria make a "gel" around the individual cells which binds them into a colony. That is why they appear as "clouds." The insert illustrates the general principle of the model used in the study. It depicts photons arriving, then being passed around the bacteria's membrane, where the light harvesting mechanism is located, then arriving at the various reaction center 'kitchens', being processed, and then being turned out as metabolic products for the bacteria to survive.

Credit: Dr. Wayne B. Lanier

University of Miami (UM) physicist Neil Johnson, who studies purple bacteria, recently found that these organisms can also survive in the presence of extreme alien light. The findings show that the way in which light is received by the bacteria can dictate the difference between life and death.

Johnson, head of the inter-disciplinary research group in complexity in the College of Arts and Sciences at UM and his collaborators share their findings in a paper titled "Extreme alien light allows survival of terrestrial bacteria" published online in Nature's Scientific Reports. The study reveals new possibilities for life on earth and elsewhere in the universe.

"The novelty of our work is that despite all the effort aimed at finding planets outside our solar system where life might exist, people have ignored the fact that photosynthesis--and hence life on Earth-- isn't just about having the right atmosphere and light intensity," Johnson says. "Instead, as we show, a crucial missing ingredient is how the light arrives at the organism."

The results are also applicable in the scenario of our own sun developing extreme fluctuations and in a situation in which bacteria are subject to extreme artificial light sources in the laboratory.

The findings may also help with engineering a new generation of designer-light-harvesting structures.

Using a mathematical model the researchers calculated the probability of survival when the bacteria is subjected to bursts of light, similar to what might be experienced if the light source was an unstable star. The flow of light was on average the same as the bacteria would normally receive, but since they would be receiving it in such a strange way, the researchers wondered under what situations the bacteria could survive.

"It's like saying we know we need to bring home a certain amount of food per week, but what happens if all of the food is delivered in one day? You might not be able to store all of it," Johnson says. "Maybe some food would get spoiled, or maybe you wouldn't have time to use it all," he says. "The light is like food for the bacteria, and the issue is the amount of food and the timing with which you bring it in."

Light comes in packets of photons. Purple bacteria process light in places callereaction centers, where the energy of the photons fuels the production of metabolic materials. Johnson compares the situation to asking what happens when food arrives in the kitchen in an irregular way.

"The reaction center, like any kitchen, can't do a thousand things at once. They can only handle one photon at a time," Johnson says. "The new chemicals made in the process take some time to diffuse. Otherwise, it results in a buildup of chemicals that can kill the bacteria," he says. "Since we are concluding this from statistical calculations, we can say it's very unlikely that the bacteria will survive."

To their surprise, the researchers found that while many seemingly innocuous changes in the way the light arrives at the organisms end up proving fatal, the bacteria could survive a sudden deluge of photons. The key to enduring such extreme conditions is that that there are many reaction center 'kitchens.' Therefore, the photons spread out naturally, leaving each reaction center enough time to recover.

"Ultimately the chemicals have time to diffuse and that is what saves it," Johnson says. "On the average the bacteria is therefore getting what it needs from the reaction centers."

The researchers suspect this mechanism is not unique to purple bacteria. In the future, they will expand the study to other photosynthetic life forms.

Co-authors of the study are Guannan Zhao, who was a postdoctoral fellow at UM at the time of the project; Pedro Manrique and Hong Qi doctoral students at UM; Felipe Caycedo, postdoctoral fellow at Universitat Ulm, Germany; Ferney Rodriguez and Luis Quiroga, professors at Universidad de Los Andes, Bogota, Colombia.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world. http://www.miami.edu.

Annette Gallagher | EurekAlert!
Further information:
http://www.umiami.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>