Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTSD genes identified by UCLA study

02.04.2012
Findings could lead to new screenings, targeted therapies

Why do some persons succumb to post-traumatic stress disorder (PTSD) while others who suffered the same ordeal do not? A new UCLA study may shed light on the answer.

UCLA scientists have linked two genes involved in serotonin production to a higher risk of developing PTSD. Published in the April 3 online edition of the Journal of Affective Disorders, the findings suggest that susceptibility to PTSD is inherited, pointing to new ways of screening for and treating the disorder.

"People can develop post-traumatic stress disorder after surviving a life-threatening ordeal like war, rape or a natural disaster," explained lead author Dr. Armen Goenjian, a research professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA. "If confirmed, our findings could eventually lead to new ways to screen people at risk for PTSD and target specific medicines for preventing and treating the disorder."

PTSD can arise following child abuse, terrorist attacks, sexual or physical assault, major accidents, natural disasters or exposure to war or combat. Symptoms include flashbacks, feeling emotionally numb or hyper-alert to danger, and avoiding situations that remind one of the original trauma.

Goenjian and his colleagues extracted the DNA of 200 adults from several generations of 12 extended families who suffered PTSD symptoms after surviving the devastating 1988 earthquake in Armenia.

In studying the families' genes, the researchers found that persons who possessed specific variants of two genes were more likely to develop PTSD symptoms. Called TPH1 and TPH2, these genes control the production of serotonin, a brain chemical that regulates mood, sleep and alertness -- all of which are disrupted in PTSD.

"We suspect that the gene variants produce less serotonin, predisposing these family members to PTSD after exposure to violence or disaster," said Goenjian. "Our next step will be to try and replicate the findings in a larger, more heterogeneous population."

Affecting about 7 percent of Americans, PTSD has become a pressing health issue for a large percentage of war veterans returning from Iraq and Afghanistan. The UCLA team's discovery could be used to help screen persons who may be at risk for developing PTSD.

"A diagnostic tool based upon TPH1 and TPH2 could enable military leaders to identify soldiers who are at higher risk of developing PTSD, and reassign their combat duties accordingly," observed Goenjian. "Our findings may also help scientists uncover alternative treatments for the disorder, such as gene therapy or new drugs that regulate the chemicals responsible for PTSD symptoms."

According to Goenjian, pinpointing genes connected with PTSD symptoms will help neuroscientists classify the disorder based on brain biology instead of clinical observation. Psychiatrists currently rely on a trial and error approach to identify the best medication for controlling an individual patient's symptoms.

Serotonin is the target of the popular antidepressants known as SSRIs, or selective serotonin re-uptake inhibitors, which prolong the effect of serotonin in the brain by slowing its absorption by brain cells. More physicians are prescribing SSRIs to treat psychiatric disease beyond depression, including PTSD and obsessive compulsive disorder.

Goenjian's coauthors included Julia Bailey, Alan Steinberg, Uma Dandekar and Dr. Ernest Noble of UCLA; and David Walling and Devon Schmidt of the Collaborative Neuroscience Network. No external grants supported the study.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute's faculty seeks to develop effective strategies for the prevention and treatment of neurological, psychiatric and behavioral disorder, including improvement in access to mental health services and the shaping of national health policy.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>