Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Pseudoscorpion Discovered in Yosemite National Park

02.12.2010
It waits blindly in the darkness of granite caves in Yosemite National Park, moving little to conserve energy.

Its venom-filled claw at the ready, it waits for prey to amble by it. Giving a quick tap to a possible meal, this newly discovered, blind pseudoscorpion will grab the prey and wait for the poison to take hold. Then, it will eat.

Thankfully, at less than half an inch in length with legs outstretched, Parobisium yosemite poses little threat to humans or any other animals larger than an eighth of an inch, said James C. Cokendolpher, a research scientist and assistant curator of invertebrates at The Museum of Texas Tech University.

He and Austin-based researcher, Jean K. Krejca, recently documented the new arachnid in the Sept. 30th Occasional Papers by Texas Tech University’s Natural Science Research Laboratories. The new animal is commonly called the Yosemite cave pseudoscorpion.

“This pseudoscorpion was originally found three or four years ago,” Cokendolpher said. “There was a team from Austin that was hired to go into some of the caves in Yosemite National Park to do a survey and map some of the caves. Jean was one of the first ones to discover the species. She and others caught two of them, which were sent to me for identification. Once we discovered it was a species unknown to science, they went back and collected in some other areas to see if the species was there.”

Most cave-dwelling species live in limestone caves, he said, where more humidity and access to food makes it more hospitable for life. Finding Parobisium yosemite in the caves formed from granite rockfalls came as a surprise.

It might be the second discovered cave-dwelling pseudoscorpion that lives in these granite talus caves in the world, he said.

Strange to behold, pseudoscorpions are small arachnid predators, Cokendolpher said. With claws in the front, the animals have eight legs, but no long post-abdomen with a stinger like a real scorpion. Pseudoscorpions are an order of arachnids unto themselves, such as ticks, mites, daddy longlegs and vinegaroons.

“This pseudoscorpion is as large as many of the other cave-dwelling species,” Cokendolpher said, explaining most of the more than 3,000 species of pseudoscorpions are much smaller. “Cave species are generally larger, have longer appendages, lighter coloration and are missing all the eyes. The canyon where it was found was made by a glacier during an ice age millions of years ago. Through time, rubble with larger rocks would fall and create piles with caves or subterranean voids. We think that’s where this animal was trapped and evolved into the species that it is now.”

Cokendolpher explained the animal doesn’t move around much, probably to conserve energy.

“I kept a couple of them in the laboratory for quite a while,” he said. “They basically sat and did nothing for much of the time. We kept them in Petri dishes with plaster of Paris that was moistened so it was more like cave conditions. When we introduced other animals into the Petri dish it would go over and tap the animal. When it did that, it was able to sense chemical cues there such as identification, how large the item was and whether it was something suitable to eat. Out of several weeks we kept them, the only thing that was eaten was a tiny spider. Like many of other cave animals, it doesn’t need a lot of nourishment. That’s good for them in a food-poor environment.”

Watch the interview with Cokendolpher at
http://www.youtube.com/watch?v=pbOxJ08xtHw
Find Texas Tech news, experts and story ideas at www.media.ttu.edu.
CONTACT: James Cokendolpher, assistant curator, invertebrate zoology, Museum of Texas Tech University, (806) 742-2486 ext. 271, or james.cokendolpher@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>