Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Pseudoscorpion Discovered in Yosemite National Park

02.12.2010
It waits blindly in the darkness of granite caves in Yosemite National Park, moving little to conserve energy.

Its venom-filled claw at the ready, it waits for prey to amble by it. Giving a quick tap to a possible meal, this newly discovered, blind pseudoscorpion will grab the prey and wait for the poison to take hold. Then, it will eat.

Thankfully, at less than half an inch in length with legs outstretched, Parobisium yosemite poses little threat to humans or any other animals larger than an eighth of an inch, said James C. Cokendolpher, a research scientist and assistant curator of invertebrates at The Museum of Texas Tech University.

He and Austin-based researcher, Jean K. Krejca, recently documented the new arachnid in the Sept. 30th Occasional Papers by Texas Tech University’s Natural Science Research Laboratories. The new animal is commonly called the Yosemite cave pseudoscorpion.

“This pseudoscorpion was originally found three or four years ago,” Cokendolpher said. “There was a team from Austin that was hired to go into some of the caves in Yosemite National Park to do a survey and map some of the caves. Jean was one of the first ones to discover the species. She and others caught two of them, which were sent to me for identification. Once we discovered it was a species unknown to science, they went back and collected in some other areas to see if the species was there.”

Most cave-dwelling species live in limestone caves, he said, where more humidity and access to food makes it more hospitable for life. Finding Parobisium yosemite in the caves formed from granite rockfalls came as a surprise.

It might be the second discovered cave-dwelling pseudoscorpion that lives in these granite talus caves in the world, he said.

Strange to behold, pseudoscorpions are small arachnid predators, Cokendolpher said. With claws in the front, the animals have eight legs, but no long post-abdomen with a stinger like a real scorpion. Pseudoscorpions are an order of arachnids unto themselves, such as ticks, mites, daddy longlegs and vinegaroons.

“This pseudoscorpion is as large as many of the other cave-dwelling species,” Cokendolpher said, explaining most of the more than 3,000 species of pseudoscorpions are much smaller. “Cave species are generally larger, have longer appendages, lighter coloration and are missing all the eyes. The canyon where it was found was made by a glacier during an ice age millions of years ago. Through time, rubble with larger rocks would fall and create piles with caves or subterranean voids. We think that’s where this animal was trapped and evolved into the species that it is now.”

Cokendolpher explained the animal doesn’t move around much, probably to conserve energy.

“I kept a couple of them in the laboratory for quite a while,” he said. “They basically sat and did nothing for much of the time. We kept them in Petri dishes with plaster of Paris that was moistened so it was more like cave conditions. When we introduced other animals into the Petri dish it would go over and tap the animal. When it did that, it was able to sense chemical cues there such as identification, how large the item was and whether it was something suitable to eat. Out of several weeks we kept them, the only thing that was eaten was a tiny spider. Like many of other cave animals, it doesn’t need a lot of nourishment. That’s good for them in a food-poor environment.”

Watch the interview with Cokendolpher at
http://www.youtube.com/watch?v=pbOxJ08xtHw
Find Texas Tech news, experts and story ideas at www.media.ttu.edu.
CONTACT: James Cokendolpher, assistant curator, invertebrate zoology, Museum of Texas Tech University, (806) 742-2486 ext. 271, or james.cokendolpher@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>