Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘Switches’ Could Turn Cancer Cells Into Tiny Chemotherapy Factories

27.09.2011
Johns Hopkins researchers have devised a protein “switch” that instructs cancer cells to produce their own anti-cancer medication.

In lab tests, the researchers showed that these switches, working from inside the cells, can activate a powerful cell-killing drug when the device detects a marker linked to cancer. The goal, the scientists said, is to deploy a new type of weapon that causes cancer cells to self-destruct while sparing healthy tissue.

This new cancer-fighting strategy and promising early lab test results were reported this week in the online early edition of Proceedings of the National Academy of Sciences. Although the switches have not yet been tested on human patients, and much more testing must be done, the researchers say they have taken a positive first step toward adding a novel weapon to the difficult task of treating cancer.

One key problem in fighting cancer is that broadly applied chemotherapy usually also harms healthy cells. In the protein switch strategy, however, a doctor would instead administer a “prodrug,” meaning an inactive form of a cancer-fighting drug. Only when a cancer marker is present would the cellular switch turn this harmless prodrug into a potent form of chemotherapy.

“The switch in effect turns the cancer cell into a factory for producing the anti-cancer drug inside the cancer cell,” said Marc Ostermeier, a Johns Hopkins chemical and biomolecular engineering professor in the Whiting School of Engineering, who supervised development of the switch.

“The healthy cells will also receive the prodrug,” he added, “and ideally it will remain in its non-toxic form. Our hope is that this strategy will kill more cancer cells while decreasing the unfortunate side effects on healthy cells.”

To demonstrate that these switches can work, the research team successfully tested them on human colon cancer and breast cancer cells in Ostermeier’s lab and in the laboratory of James R. Eshleman, a professor of pathology and oncology in the Johns Hopkins School of Medicine.

“This is a radically different tool to attack cancers,” said Eshleman, a co-author of the PNAS journal article, “but many experiments need to be done before we will be able to use it in patients.”

The next step is animal testing, expected to begin within a year, Ostermeier said.

Ostermeier’s team made the cancer-fighting switch by fusing together two different proteins. One protein detects a marker that cancer cells produce. The other protein, from yeast, can turn an inactive prodrug into a cancer-cell killer. “When the first part of the switch detects cancer, it tells its partner to activate the chemotherapy drug, destroying the cell,” Ostermeier said.

In order for this switch to work, it must first get inside the cancer cells. Ostermeier said this can be done through a technique in which the switch gene is delivered inside the cell. The switch gene serves as the blueprint from which the cell’s own machinery constructs the protein switch. Another approach, he said, would be to develop methods to deliver the switch protein itself to cells.

Once the switches are in place, the patient would receive the inactive chemotherapy drug, which would turn into a cancer attacker inside the cells where the switch has been flipped on.

Although many researchers are developing methods to deliver anti-cancer drugs specifically to cancer cells, Ostermeier said the protein switch tactic skirts difficulties encountered in those methods.

“The protein switch concept changes the game by providing a mechanism to target production of the anti-cancer drugs inside cancer cells instead of targeting delivery of the anti-cancer drug to cancer cells,” he said.

The lead author of the PNAS study was Chapman M. Wright, who worked on the project as an assistant research scientist in Ostermeier’s lab and who now works for a private biotech company. Co-authors on the paper were Ostermeier, Eshleman and R. Clay Wright (not related to Chapman Wright), a doctoral student in Ostermeier’s lab. Through the Johns Hopkins Technology Transfer office, Ostermeier and Chapman Wright have filed for patent protection covering the protein switch for cancer technology.

The research was funded by the National Institutes of Health. The paper, “A protein therapeutic modality founded on molecular recognition,” can be viewed online at:

http://www.pnas.org/content/early/2011/09/12/1102803108.full.pdf+html

Related links:
Marc Ostermeier’s Lab Page: http://www.jhu.edu/chembe/ostermeier/
Department of Chemical and Biomolecular Engineering:
http://www.jhu.edu/chembe/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>