Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘Switches’ Could Turn Cancer Cells Into Tiny Chemotherapy Factories

27.09.2011
Johns Hopkins researchers have devised a protein “switch” that instructs cancer cells to produce their own anti-cancer medication.

In lab tests, the researchers showed that these switches, working from inside the cells, can activate a powerful cell-killing drug when the device detects a marker linked to cancer. The goal, the scientists said, is to deploy a new type of weapon that causes cancer cells to self-destruct while sparing healthy tissue.

This new cancer-fighting strategy and promising early lab test results were reported this week in the online early edition of Proceedings of the National Academy of Sciences. Although the switches have not yet been tested on human patients, and much more testing must be done, the researchers say they have taken a positive first step toward adding a novel weapon to the difficult task of treating cancer.

One key problem in fighting cancer is that broadly applied chemotherapy usually also harms healthy cells. In the protein switch strategy, however, a doctor would instead administer a “prodrug,” meaning an inactive form of a cancer-fighting drug. Only when a cancer marker is present would the cellular switch turn this harmless prodrug into a potent form of chemotherapy.

“The switch in effect turns the cancer cell into a factory for producing the anti-cancer drug inside the cancer cell,” said Marc Ostermeier, a Johns Hopkins chemical and biomolecular engineering professor in the Whiting School of Engineering, who supervised development of the switch.

“The healthy cells will also receive the prodrug,” he added, “and ideally it will remain in its non-toxic form. Our hope is that this strategy will kill more cancer cells while decreasing the unfortunate side effects on healthy cells.”

To demonstrate that these switches can work, the research team successfully tested them on human colon cancer and breast cancer cells in Ostermeier’s lab and in the laboratory of James R. Eshleman, a professor of pathology and oncology in the Johns Hopkins School of Medicine.

“This is a radically different tool to attack cancers,” said Eshleman, a co-author of the PNAS journal article, “but many experiments need to be done before we will be able to use it in patients.”

The next step is animal testing, expected to begin within a year, Ostermeier said.

Ostermeier’s team made the cancer-fighting switch by fusing together two different proteins. One protein detects a marker that cancer cells produce. The other protein, from yeast, can turn an inactive prodrug into a cancer-cell killer. “When the first part of the switch detects cancer, it tells its partner to activate the chemotherapy drug, destroying the cell,” Ostermeier said.

In order for this switch to work, it must first get inside the cancer cells. Ostermeier said this can be done through a technique in which the switch gene is delivered inside the cell. The switch gene serves as the blueprint from which the cell’s own machinery constructs the protein switch. Another approach, he said, would be to develop methods to deliver the switch protein itself to cells.

Once the switches are in place, the patient would receive the inactive chemotherapy drug, which would turn into a cancer attacker inside the cells where the switch has been flipped on.

Although many researchers are developing methods to deliver anti-cancer drugs specifically to cancer cells, Ostermeier said the protein switch tactic skirts difficulties encountered in those methods.

“The protein switch concept changes the game by providing a mechanism to target production of the anti-cancer drugs inside cancer cells instead of targeting delivery of the anti-cancer drug to cancer cells,” he said.

The lead author of the PNAS study was Chapman M. Wright, who worked on the project as an assistant research scientist in Ostermeier’s lab and who now works for a private biotech company. Co-authors on the paper were Ostermeier, Eshleman and R. Clay Wright (not related to Chapman Wright), a doctoral student in Ostermeier’s lab. Through the Johns Hopkins Technology Transfer office, Ostermeier and Chapman Wright have filed for patent protection covering the protein switch for cancer technology.

The research was funded by the National Institutes of Health. The paper, “A protein therapeutic modality founded on molecular recognition,” can be viewed online at:

http://www.pnas.org/content/early/2011/09/12/1102803108.full.pdf+html

Related links:
Marc Ostermeier’s Lab Page: http://www.jhu.edu/chembe/ostermeier/
Department of Chemical and Biomolecular Engineering:
http://www.jhu.edu/chembe/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>