Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein and microRNA block cellular transition vital to metastasis

28.02.2011
Tumor suppressor p53 launches miR-200c to reverse epithelial-to-mesenchymal transition

Like a bounty hunter returning escapees to custody, a cancer-fighting gene converts organ cells that change into highly mobile stem cells back to their original, stationary state, researchers report online at Nature Cell Biology.

This newly discovered activity of the p53 gene offers a potential avenue of attack on breast cancer stem cells thought to play a central role in progression and spread of the disease, according to scientists at The University of Texas MD Anderson Cancer Center.

Long known for monitoring DNA damage and forcing defective cells to kill themselves, p53 also activates bits of RNA that block two proteins, the researchers found. This prevents conversion of epithelial-differentiated cells, which line or cover an organ, into cells that resemble mesenchymal stem cells when stimulated by the TGF-??growth factor.

Mesenchymal cells are mobile adult stem cells that can reproduce themselves and differentiate into a variety of cell types

"Blocking this conversion from epithelial cell to a mesenchymal cell type is important because that change plays an essential role in cancer metastasis," said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology.

Cancer treatment potential

"We found that p53 activates the micro RNA miR-200c, which forces cells that have taken on stem cell traits to revert to epithelial form," Hung said. "Activating this pathway has therapeutic potential to target tumor-initiating cells that have stem cell characteristics."

Research has shown that about 80 percent of all solid tumors begin in the epithelial cells. However, 90 percent of cancer deaths are caused by metastasis, the progression and spread of the disease to other organs.

The epithelial-to-mesenchymal transition (EMT) and its opposite process play important roles in embryonic development. Research has connected EMT activation to cancer progression and metastasis. Recent studies tie EMT to gain of stem cell traits in normal and transformed cells.

Cell status depends on p53, miR-200c levels

A series of experiments established that the p53 protein activates the miR-200c gene to produce the microRNA and that expression of the protein and miR-200c moved up and down together.

Knockout experiments in normal breast epithelial cells consistently showed that p53 expression stifled the EMT transition.

Cells with reduced p53 changed into mesenchymal-like cells.

When miR-200c was overexpressed in cells with low levels of p53, the cells took on epithelial characteristics, indicating that p53 uses the microRNA to block or reverse the transition to mesenchymal-type cells.

Mutated p53 failed to produce miR-200c, increasing stem cells in the cell culture.

Tissue array analysis of gene expression in 106 human breast tumor samples showed that low p53 expression correlated with higher expression of two genes associated with EMT. Increased p53 raised levels of miR-200c and the expression of a gene associated with epithelial status.

Mutations of p53 occur in more than half of cancers and loss of p53 activity correlates with poor prognosis in several cancer types. Restoring functions lost by p53 mutation by re-expressing miR-200c might be a good therapeutic strategy for treatment of p53-deficient tumors, Hung said.

Research was funded by grants from the National Cancer Institute, including those for MD Anderson's Specialized Program in Research Excellence (SPORE) for breast cancer and MD Anderson's cancer center support grant; the National Breast Cancer Foundation, Inc.; the Breast Cancer Research Foundation; the MD Anderson-China Medical University and Hospital Sister Institution Fund; the National Science Council of Taiwan and the Cancer Research Center of Excellence, Taiwan Department of Health.

Co-authors with Hung, who also is MD Anderson vice president of basic research, are co-lead authors Chun-Ju Chang, Ph.D., and Chi-Hong Chao, Ph.D., Weiya Xia, M.D., Jer-Yen Yang, Ph.D., Yan Xiong, M.D., Chia-Wei Li, Ph.D., Wen-Hsuan Yu, Sumaiyah Rehman, Jennifer Hsu, Ph.D.,, Heng-Huan Lee, Mo Liu, Chun-Te Chen and Dihua Yu, M.D., Ph.D.

Yu, Rehman, Lee, Liu and Chen are graduate students in The University of Texas Graduate School of Biomedical Sciences, a joint operation of MD Anderson and The University of Texas Health Science Center at Houston (UTHealth).

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>