Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein extracts from lentils and beans can compete with soy

06.08.2008
It is above all soy and peas which have asserted themselves as vegetable sources of protein.

But the results of the PlantPro research project show that there are many more plants which are suitable for the production of protein compounds as food supplements.

ttz Bremerhaven examined 20 plants amongst which lentils and white beans particularly stood out due to their content in terms of nutritional physiology and their excellent functional features. The magazine "European Food Research and Technology" has just published an article in its web edition by Marie Bildstein, Dr. Mark Lohmann, Caroline Hennings and Dr. Hauke Hilz, scientists at ttz Bremerhaven, which gives a first detailed synopsis of the results. Co-author Alexander Krause, Managing Director of Gewürzmühle Nesse GmbH, a firm taking part in the project, was particularly interested in putting these results into practice in an efficient and economical way.

High nutritional value and more moist baked goods

... more about:
»Protein »beans »enzyme »extraction »nutritional

Parallel to the growing demand for animal protein, the availability of this type of protein has also improved continuously over the last 40 years. The market will however reach the limit of its growth potential in the foreseeable future. In order to continue to satisfy demand, the search for sources of well-tolerated and low-fat protein compounds is very important. To date, soy beans and peas have been the main suppliers of vegetable protein. However, their utilisation is looked at with a critical eye or even boycotted in view of an increasing use of genetic engineering. In addition, a large number of consumers suffer an allergic reaction if they frequently eat soy products or milk proteins (caseins). Other pulses, such as lentils or white beans, have proven to cause less allergies.

Gentle protein extraction with water

Various types of plants have a high protein content - mostly in a concentrated form in their seeds. In the PlantPro project, which was funded by the German Ministry of Education and Research, ttz Bremerhaven, together with Gewürzmühle Nesse and a partner from Israel, extracted proteins from 20 different plants which so far have scarcely been used as a source of protein. A gentle extraction method using water was developed and deployed at an ideal temperature and pH value. However, since the tough cell wall structures and starch content made extraction difficult, the scientists were only able to recover very small yields.

Enzymes increase yield by 19 percent

The food technologists therefore incorporated an intermediate stage into the extraction process where selected enzymes were added to the solution. "The enzymes split the starch and, in so doing, improve the extraction of the proteins. In the case of white beans and lentils, this process increases the yield by 19 percent by adding the enzyme glucoamylase", explains Marie Bildstein, the Project Manager at ttz Bremerhaven. The optimum constellation of the factors of reaction time, concentration of the raw material and the enzyme, pH value and temperature also contributed to optimising the result. In order to obtain the extract in a powder form and to be able to process it further in a wide variety of ways, the extract passes through the following process stages after separation: Dissolution, filtration and, finally, spray drying.

Comparison of nutritional value and functionality

Not only an efficient extraction process but also the nutritional value of the protein formulations obtained must be convincing if animal proteins or vegetable proteins from soy and peas are to be substituted in the long term. The extract fulfils the requirements of industry in terms of further processing: It is a light-coloured powder which is odourless and tasteless and raises the functional content of the foodstuff without drastically increasing the fat content.

In the case of the following features, the protein extract from lentils or white beans scores better than reference products from soy or peas:

- Foam formation and foam stability which are important for achieving a firm structure in foodstuffs

- Gel-forming characteristics

- Heat resistance

In a comparison of emulsion stability, the extract achieves the same result as alternatives from soy or peas. An important indicator for the quality of a product in terms of its nutritional physiology is the PDCAAS (Protein Digestibility Corrected Amino Acid Score). This value indicates to what degree a protein corresponds to the optimum protein in terms of nutritional physiology (set at 100). The PDCAAS of lentil protein was 51 percent, that of white beans 65 percent. By comparison, soy achieves a value of 91 percent and wheat protein 42 percent. Extracts from lentils and beans therefore produce a mid-range PDCAAS value.

Improved quality of baked goods

The use of protein extract from lentils and white beans in the production of white bread results in a crumb with a coarser pore structure. The quality and appearance of the white bread improve through this structure since the bread can bind more moisture. The bread keeps longer as a result. Thanks to the softer and more moist mouth feel, the consumer rates the bread as "fresher".

Contact:
Britta Rollert,
ttz Bremerhaven, Public Relations
Telephone 0471 / 4832-121/-124, Fax 0471 / 4832-129
Email: brollert@ttz-bremerhaven.de

Britta Rollert | idw
Further information:
http://www.ttz-bremerhaven.de
http://www.springerlink.com

Further reports about: Protein beans enzyme extraction nutritional

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>