Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein in the envelope enclosing the cell nucleus - a new piece of the puzzle in research on cancer and stem cells?

17.06.2009
A research team led by Professor Einar Hallberg at the Department of Life Sciences at Södertörn University in Sweden has discovered a new protein in the inner membrane of the cell nucleus. This protein may play an important role in cell division and now provides a new piece of the puzzle to study in cancer research

All living organisms are made up of cells. The cell consists of different "compartments" that have different functions. In one of the compartments, the cell nucleus, there is genetic information about how the organism's proteins should look like, and when they should be produced.

The cell nucleus is enclosed by a double lipid membrane that is called the nuclear envelope. All transports in and out of the nucleus take place through pores in the nuclear envelope. It is estimated that there are some 100 different proteins in the nuclear envelope, but today scientists do not yet know precisely how they function.

The protein that the Södertörn researchers have now discovered, called Samp1, normally exists in the membrane envelope that surrounds the cell nucleus. During cell division it turned out that it was part of the process that distributes the chromosomes evenly between the daughter cells, the so-called "mitotic spindle". The protein was therefore named Samp1 (Spindle associated membrane protein 1).

"This discovery was unexpected, since it was previously not believed that integral proteins that are embedded in membranes could be in the mitotic spindle. Nor was it previously understood what functions such proteins would have there," says Professor Hallberg.

The distribution of chromosomes during cell division is extremely rigidly regulated, and the slightest error can lead to the development of tumors. Samp1 will now be a key piece of the puzzle to study in cancer research.

"An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells", (Journal of Cell Science 122, 2100-2107), was part of a doctoral thesis at the Karolinska Institutet that was defended at Södertörn University by Dr. Charlotta Buch on February 20 this year.

Einar Hallberg's research team discovered in their study that the Samp1 protein has connections to the cell skeleton outside the cell nucleus. This takes place between cell divisions, when the protein is in the inner membrane of the cell nucleus. It is possible that Samp1 may play an important role when mechanical signals from the outside of the cell are transmitted to the genes in the cell nucleus. Professor Hallberg's research group is now focusing on investigating what role Samp1 might have in the transmission of mechanical signals from the outside of the cell to the genes.

Recently mechanical signaling has been shown to be extremely important in how the body's cells are organized to form various organs. For instance, cultured stem cells develop into nerve cells, muscle cells, or bone cells depending on the stiffness of the material they grow on. Increased knowledge about mechanical signaling is of great importance to stem cell research and future regenerative medicine.

Contact: Professor Einar Hallberg, e-mail:einar.hallberg@sh.se,
phone: +46 (0)8-608 47 33
Pressofficer Mari Gerdin: mari.gerdin@sh.se; +46-76 785 41 41

Mari Gerdin | idw
Further information:
http://www.vr.se
http://diss.kib.ki.se/2009/978-91-7409-334-6/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>