Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel protein critical for cellular proliferation discovered

08.10.2010
Accurate duplication of genetic material and the faithful segregation of chromosomes are critical for cell survival. The initiation of DNA replication is linked both to cell cycle progression and chromatin organization.

In plants, animals and other "eukaryotes," the assembly of a multi-protein complex called pre-replicative complex (preRC) is the first step in the initiation of DNA replication. As the name implies, origin recognition complex (ORC) proteins bind to origins of DNA replication.

Subsequently, other components of preRC are assembled at these sites. In addition to its role in DNA replication, ORC is also involved in gene silencing and organization of the tightly packed DNA, called heterochromatin. How ORC is brought to the DNA in human cells had previously remained a mystery.

Researchers at the University of Illinois, led by Professor Supriya Prasanth from the school of molecular and cellular biology, have identified a novel protein that is highly conserved in higher eukaryotes. They have shown that in human cells, this protein (once known as LRWD1 but renamed ORCA, for "ORC-associated" protein) associates with ORC and shows similar cell cycle dynamics to ORC. Along with ORC, this protein binds to heterochromatic structures, including centromeres and telomeres, which are important to cell division and chromosome maintenance.

The researchers further demonstrated that ORCA efficiently recruits ORC to chromatin, the DNA and proteins that make up the chromosome. Depletion of ORCA in human primary cells as well as in embryonic stem cells results in the loss of ORC binding to chromatin and subsequent arrest of cells in a vital phase of the cell cycle. Loss of ORCA results in defects in cellular proliferation, suggesting that a fine-tuned balance in the levels of ORCA is maintained in a normal cell. These results suggest that a novel protein, ORCA, is critical for initiation of DNA replication and heterochromatin organization in mammalian cells.

This work appears in the October 8, 2010 issue of the journal Molecular Cell.

"The discovery of this new protein is going to be revolutionary in the field of replication and cell cycle," Prasanth said. "We all know that diseases like cancer are caused by uncontrolled proliferation of cells, and our data demonstrates that ORCA controls proliferation of cells. This work is going to have important implications in cancer biology."

The study was spearheaded by Zhen Shen, a graduate student, with assistance from post-doctoral fellows Kizhakke M. Sathyan and Arindam Chakraborty. Other Illinois researchers on the study include Kannanganattu Prasanth, a professor in the department of cell and developmental biology; his graduate student Ruiping Zheng; Brian Freeman, a professor in the department of cell and developmental biology; Fei Wang, a professor in cell and developmental biology; and his graduate student Yejie Geng. The funding for this study was provided by National Science Foundation, and The Leukemia and Lymphoma Society, through a Special Fellow Award granted to Supriya Prasanth.

William Gillespie | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>