Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting cells

25.08.2011
Evidence found for a neuronal switch to prevent neurodegenerative diseases

Scientists at Northwestern University report a surprising discovery that offers a possible new route for the treatment of neurodegenerative diseases. In a study of the transparent roundworm C. elegans, they found that a genetic switch in master neurons inhibits the proper functioning of protective cell stress responses, leading to the accumulation of misfolded and damaged proteins.

Neurodegenerative diseases, ranging from Huntington's and Parkinson's to amyotrophic lateral sclerosis and Alzheimer's, are believed to stem from early events that lead to an accumulation of damaged proteins in cells. Yet all animals, including humans, have an ancient and very powerful mechanism for detecting and responding to such damage, known as the heat shock response.

"Why are these diseases so widespread if our cells have ways to detect and prevent damaged proteins from accumulating?" said Richard I. Morimoto, who led the research together with postdoctoral colleague Veena Prahlad. "Can our body fix the problem? That is the conundrum."

"In our study, much to our surprise, we discovered that the nervous system sends negative signals to other tissues in the animal that inhibit the ability of cells to activate a protective heat shock response," Morimoto said. "The machinery to repair the damaged proteins is intact, but the nervous system is sending a signal that prevents it from doing its job."

When the signal from the nervous system was reduced, the cells' heat shock response returned, leading to elevated levels of special protective proteins, called molecular chaperones, that kept the damaged proteins in check.

Morimoto is the Bill and Gayle Cook Professor of Biology in the department of molecular biosciences and the Rice Institute for Biomedical Research in Northwestern's Weinberg College of Arts and Sciences.

The findings are published by the Proceedings of the National Academy of Sciences (PNAS).

"Currently, we have no solution for these devastating diseases," Morimoto said. "This master neuronal switch could offer a new target for therapy. If we can restore the natural ability of cells to prevent protein damage, our cells should be healthier longer and the quality of life will be better."

The findings are also applicable to other diseases that involve protein misfolding, such as cancer and metabolic diseases, Morimoto said.

Morimoto and Prahlad studied C. elegans, specifically models with different forms of protein misfolding diseases. The transparent roundworm is a valued research tool as its biochemical environment is similar to that of human beings and its genome, or complete genetic sequence, is known.

They interfered with the nervous system signal, the "master switch," to see what would happen to the animals. When the signal was working, the animals accumulated damaged proteins in their cells that interfered with cellular function. But when the researchers reduced the neuronal signal a little bit, the normal cellular response to protein damage returned and the animals were healthy.

While the downregulation of the neuronal signal in the study was done genetically, in humans the idea would be to alter the signal chemically, Morimoto said.

"This work gives us an appreciation that animals are not just a bundle of cells, each on its own to sense and respond to damage," he said. "The cells are organized into tissues, tied into a network that is organized by the brain. The brain can tell the cells to turn on a stress response or not. The nervous system is talking to all the parts to orchestrate an organismal response to stress. That's what's so fascinating."

The paper, titled "Neuronal circuitry regulates Q:1 the response of Caenorhabditis elegans to misfolded proteins," is available at http://www.pnas.org/content/early/2011/08/10/1106557108.abstract.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>