Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting cells

25.08.2011
Evidence found for a neuronal switch to prevent neurodegenerative diseases

Scientists at Northwestern University report a surprising discovery that offers a possible new route for the treatment of neurodegenerative diseases. In a study of the transparent roundworm C. elegans, they found that a genetic switch in master neurons inhibits the proper functioning of protective cell stress responses, leading to the accumulation of misfolded and damaged proteins.

Neurodegenerative diseases, ranging from Huntington's and Parkinson's to amyotrophic lateral sclerosis and Alzheimer's, are believed to stem from early events that lead to an accumulation of damaged proteins in cells. Yet all animals, including humans, have an ancient and very powerful mechanism for detecting and responding to such damage, known as the heat shock response.

"Why are these diseases so widespread if our cells have ways to detect and prevent damaged proteins from accumulating?" said Richard I. Morimoto, who led the research together with postdoctoral colleague Veena Prahlad. "Can our body fix the problem? That is the conundrum."

"In our study, much to our surprise, we discovered that the nervous system sends negative signals to other tissues in the animal that inhibit the ability of cells to activate a protective heat shock response," Morimoto said. "The machinery to repair the damaged proteins is intact, but the nervous system is sending a signal that prevents it from doing its job."

When the signal from the nervous system was reduced, the cells' heat shock response returned, leading to elevated levels of special protective proteins, called molecular chaperones, that kept the damaged proteins in check.

Morimoto is the Bill and Gayle Cook Professor of Biology in the department of molecular biosciences and the Rice Institute for Biomedical Research in Northwestern's Weinberg College of Arts and Sciences.

The findings are published by the Proceedings of the National Academy of Sciences (PNAS).

"Currently, we have no solution for these devastating diseases," Morimoto said. "This master neuronal switch could offer a new target for therapy. If we can restore the natural ability of cells to prevent protein damage, our cells should be healthier longer and the quality of life will be better."

The findings are also applicable to other diseases that involve protein misfolding, such as cancer and metabolic diseases, Morimoto said.

Morimoto and Prahlad studied C. elegans, specifically models with different forms of protein misfolding diseases. The transparent roundworm is a valued research tool as its biochemical environment is similar to that of human beings and its genome, or complete genetic sequence, is known.

They interfered with the nervous system signal, the "master switch," to see what would happen to the animals. When the signal was working, the animals accumulated damaged proteins in their cells that interfered with cellular function. But when the researchers reduced the neuronal signal a little bit, the normal cellular response to protein damage returned and the animals were healthy.

While the downregulation of the neuronal signal in the study was done genetically, in humans the idea would be to alter the signal chemically, Morimoto said.

"This work gives us an appreciation that animals are not just a bundle of cells, each on its own to sense and respond to damage," he said. "The cells are organized into tissues, tied into a network that is organized by the brain. The brain can tell the cells to turn on a stress response or not. The nervous system is talking to all the parts to orchestrate an organismal response to stress. That's what's so fascinating."

The paper, titled "Neuronal circuitry regulates Q:1 the response of Caenorhabditis elegans to misfolded proteins," is available at http://www.pnas.org/content/early/2011/08/10/1106557108.abstract.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>