Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress on detecting glucose levels in saliva

04.06.2014

Researchers at Brown have developed a new biochip sensor that that can selectively measure glucose concentrations in a complex fluid like saliva. Their approach combines dye chemistry with plasmonic interferometry. A dependable glucose monitoring system that uses saliva rather than blood would be a significant improvement in managing diabetes.

Researchers from Brown University have developed a new biochip sensor that can selectively measure concentrations of glucose in a complex solution similar to human saliva. The advance is an important step toward a device that would enable people with diabetes to test their glucose levels without drawing blood.


Dealing with the 1 percent

A plasmonic interferometer can detect glucose molecules in water. Detection of glucose in a complex fluid is more challenging. Controlling the distance between grooves and using dye chemistry on glucose molecules allows researchers to measure glucose levels despite the 1 percent of saliva that is not water.

The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry, a means of detecting chemical signature of compounds using light. The device is sensitive enough to detect differences in glucose concentrations that amount to just a few thousand molecules in the sampled volume.

“We have demonstrated the sensitivity needed to measure glucose concentrations typical in saliva, which are typically 100 times lower than in blood,” said Domenico Pacifici, assistant professor of engineering at Brown, who led the research. “Now we are able to do this with extremely high specificity, which means that we can differentiate glucose from the background components of saliva.”

The new research is described in the cover article of the June issue of the journal Nanophotonics.

The biochip is made from a one-inch-square piece of quartz coated with a thin layer of silver. Etched in the silver are thousands of nanoscale interferometers — tiny slits with a groove on each side. The grooves measure 200 nanometers wide, and the slit is 100 nanometers wide — about 1,000 times thinner than a human hair.

When light is shined on the chip, the grooves cause a wave of free electrons in the silver — a surface plasmon polariton — to propagate toward the slit. Those waves interfere with light that passes through the slit. Sensitive detectors then measure the patterns of interference generated by the grooves and slits.

When a liquid is deposited on the chip, the light and the surface plasmon waves propagate through that liquid before they interfere with each other. That alters the interference patterns picked up by the detectors, depending on the chemical makeup of the liquid. By adjusting the distance between the grooves and the center slit, the interferometers can be calibrated to detect the signature of specific compounds or molecules, with high sensitivity in extremely small sample volumes.

In a paper published in 2012, the Brown team showed that interferometers on a biochip could be used to detect glucose in water. However, selectively detecting glucose in a complex solution like human saliva was another matter.

“Saliva is about 99 percent water, but it’s the 1 percent that’s not water that presents problems,” Pacifici said. “There are enzymes, salts, and other components that may affect the response of the sensor. With this paper we solved the problem of specificity of our sensing scheme.”

They did that by using dye chemistry to create a trackable marker for glucose. The researchers added microfluidic channels to the chip to introduce two enzymes that react with glucose in a very specific way. The first enzyme, glucose oxidase, reacts with glucose to form a molecule of hydrogen peroxide. This molecule then reacts with the second enzyme, horseradish peroxidase, to generate a molecule called resorufin, which can absorb and emit red light, thus coloring the solution. The researchers could then tune the interferometers to look for the red resorufin molecules.

“The reaction happens in a one-to-one fashion: A molecule of glucose generates one molecule of resorufin,” Pacifici said. “So we can count the number of resorufin molecules in the solution, and infer the number of glucose molecules that were originally present in solution.”

The team tested its combination of dye chemistry and plasmonic interferometry by looking for glucose in artificial saliva, a mixture of water, salts and enzymes that resembles the real human saliva. They found that they could detect resorufin in real time with great accuracy and specificity. They were able to detect changes in glucose concentration of 0.1 micromoles per liter — 10 times the sensitivity that can be achieved by interferometers alone.

The next step in the work, Pacifici says, is to start testing the method in real human saliva. Ultimately, the researchers hope they can develop a small, self-contained device that could give diabetics a noninvasive way to monitor their glucose levels.

There are other potential applications as well.

“We are now calibrating this device for insulin,” Pacifici said, “but in principle we could properly modify this ‘plasmonic cuvette’ sensor for detection of any molecule of interest.”

It could be used to detect toxins in air or water or used in the lab to monitor chemical reactions as they occur at the sensor surface in real time, Pacifici said.

The work is part of a collaboration between Pacifici’s group at Brown and the lab of his colleague Tayhas Palmore, professor of engineering. Graduate students Vince S. Siu, Jing Feng, and Patrick W. Flanigan are coauthors on the paper. The work was supported by National Science Foundation (CBET-1159255, DMR-1203186 and HRD-0548311) and the Juvenile Diabetes Research Foundation (JDRF Grant 17-2013-483).

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | Eurek Alert!
Further information:
http://news.brown.edu/pressreleases/2014/06/glucose

Further reports about: blood detecting dye enzymes grooves interferometers levels measure nanometers propagate saliva sensitivity

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>