Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Production of biofuels could benefit by controlling the types of cells that develop in plants

Scientists have been working for more than a decade to understand how tiny molecules called microRNA regulate genes within cells. Now researchers have discovered that microRNA actually moves between cells to help them communicate with each other and ultimately determine the types of cells that grow and develop.

This discovery has broad implications in a wide range of fields, including medical gene therapy and bioengineering of crop plants. The discovery could be especially useful in the production of biofuels, where being able to control the types of cells that develop could yield more useable plant matter.

The research – conducted at the Boyce Thompson Institute for Plant Research (BTI) in collaboration with Duke University and the Universities of Helsinki and Uppsala – was published online in the journal Nature on April 21.

The discovery of this molecular pathway represents the first time researchers have demonstrated that microRNA – small ribonucleic acid molecules that function to turn off genes in an organism – move between cells as a regulatory signal.

"Many organisms are made up of multiple types of cells, and we do not yet fully understand how these cells are put in the right places, although we believe cells communicate with each other ," said Ji-Young Lee, assistant scientist at BTI and a lead author of the article. "This is the first time anyone has clearly demonstrated cells are communicating through the movement of microRNA. It's likely that this kind of communication process is generally happening in many cell types in many organisms."

The researchers conducted the study in the root of Arabidopsis, a small flowering plant related to cabbage, where they took a closer look at the development of two types of root cells – protoxylem and metaxylem. These are key cells responsible for the transport of water and mineral nutrients in most terrestrial plants. Their goal was to determine the molecular pathway that leads to the differentiation of these two cell types.

Using a combination of molecular and cellular techniques including high-resolution imaging, they discovered a complex sequence of events at the molecular level that creates the distinction between protoxylem and metaxylem cells.

The researchers discovered that a protein molecule called SHORTROOT moves from the vascular cylinder to the endodermis, an inner skin within the root. Once there, it activates another similar protein, SCARECROW. Together, these proteins trigger the creation of the molecule microRNA 165/6. These microRNAs seem to move out of the endodermis as signaling molecules.

MicroRNA 165/6 dissolves a corresponding molecule of messenger RNA, which carries the chemical blueprint for creating proteins. High dosage of these messenger RNA molecules lead cells to become metaxylem, whereas low dosage leads to protoxylem.

Since microRNA 165/6 moves out from its source cells and dissolves their target messenger RNAs, in areas where there are high levels of microRNA 165/6, nearby cells are more likely to become protoxylem. In areas where there are lower levels of microRNA 165/6,cells turn into metaxylem.

There is reason to think that these interactions were key in the evolutionary transition from water dependent mosses to plants that grow as tall as Giant Sequoias 450 million years ago. That's because the layer of cells the researchers studied builds a waterproof tube through which plants can carry water from roots to branches, leaves and flowers.

Other lead authors of the article include Annelie Carlsbecker of Uppsala University, Yrjo Helariutta of Helsinki University and Philip N. Benfey of Duke University. BTI post doctoral associate Jose Sebastian and graduate student Jing Zhou also contributed to the paper.

You can find the full article online at

Lorraine S. Johnson | EurekAlert!
Further information:

Further reports about: BTI RNA RNA molecule cell type crop plant messenger RNA molecular pathway

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>