Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production of biofuels could benefit by controlling the types of cells that develop in plants

23.04.2010
Scientists have been working for more than a decade to understand how tiny molecules called microRNA regulate genes within cells. Now researchers have discovered that microRNA actually moves between cells to help them communicate with each other and ultimately determine the types of cells that grow and develop.

This discovery has broad implications in a wide range of fields, including medical gene therapy and bioengineering of crop plants. The discovery could be especially useful in the production of biofuels, where being able to control the types of cells that develop could yield more useable plant matter.

The research – conducted at the Boyce Thompson Institute for Plant Research (BTI) in collaboration with Duke University and the Universities of Helsinki and Uppsala – was published online in the journal Nature on April 21.

The discovery of this molecular pathway represents the first time researchers have demonstrated that microRNA – small ribonucleic acid molecules that function to turn off genes in an organism – move between cells as a regulatory signal.

"Many organisms are made up of multiple types of cells, and we do not yet fully understand how these cells are put in the right places, although we believe cells communicate with each other ," said Ji-Young Lee, assistant scientist at BTI and a lead author of the article. "This is the first time anyone has clearly demonstrated cells are communicating through the movement of microRNA. It's likely that this kind of communication process is generally happening in many cell types in many organisms."

The researchers conducted the study in the root of Arabidopsis, a small flowering plant related to cabbage, where they took a closer look at the development of two types of root cells – protoxylem and metaxylem. These are key cells responsible for the transport of water and mineral nutrients in most terrestrial plants. Their goal was to determine the molecular pathway that leads to the differentiation of these two cell types.

Using a combination of molecular and cellular techniques including high-resolution imaging, they discovered a complex sequence of events at the molecular level that creates the distinction between protoxylem and metaxylem cells.

The researchers discovered that a protein molecule called SHORTROOT moves from the vascular cylinder to the endodermis, an inner skin within the root. Once there, it activates another similar protein, SCARECROW. Together, these proteins trigger the creation of the molecule microRNA 165/6. These microRNAs seem to move out of the endodermis as signaling molecules.

MicroRNA 165/6 dissolves a corresponding molecule of messenger RNA, which carries the chemical blueprint for creating proteins. High dosage of these messenger RNA molecules lead cells to become metaxylem, whereas low dosage leads to protoxylem.

Since microRNA 165/6 moves out from its source cells and dissolves their target messenger RNAs, in areas where there are high levels of microRNA 165/6, nearby cells are more likely to become protoxylem. In areas where there are lower levels of microRNA 165/6,cells turn into metaxylem.

There is reason to think that these interactions were key in the evolutionary transition from water dependent mosses to plants that grow as tall as Giant Sequoias 450 million years ago. That's because the layer of cells the researchers studied builds a waterproof tube through which plants can carry water from roots to branches, leaves and flowers.

Other lead authors of the article include Annelie Carlsbecker of Uppsala University, Yrjo Helariutta of Helsinki University and Philip N. Benfey of Duke University. BTI post doctoral associate Jose Sebastian and graduate student Jing Zhou also contributed to the paper.

You can find the full article online at http://www.nature.com/nature/journal/vaop/ncurrent/index.html

Lorraine S. Johnson | EurekAlert!
Further information:
http://bti.cornell.edu
http://www.nature.com/nature/journal/vaop/ncurrent/index.html

Further reports about: BTI RNA RNA molecule cell type crop plant messenger RNA molecular pathway

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>