Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing artificial bones from fish scales

04.06.2012
Tokyo Tech’s Toshiyuki Ikoma and Junzo Tanaka have developed technology for producing artificial bones from fish scales and apatite. Ikoma describes the potential of fish collagen for cosmetics, artificial bones, and other medical applications in a video interview in the latest issue of Tokyo Tech’s online newsletter the Tokyo Tech Bulletin.
Toshiyuki Ikoma and Junzo Tanaka have developed technology for producing artificial bones from fish scales and apatite. “Our technology enables the formation of new bone tissues within three months,” says Ikoma. “This is much faster than the six months required using collagen from porcine dermis.” The use of fish collagen also mitigates the potential infection of humans with viruses from pigs. “This new material is very safe,” emphasizes Ikoma.

Other features of artificial bones fabricated by fish collagen and apatite include the finding that (1) the bones have a much higher density and are thereby very strong; (2) the bones implanted into bone defects transform into bone tissue much faster than those using porcine dermis collagen.

“One of our major aims is to use fish collagen for the treatment of bone tumors in older people whose bones take longer to regenerate,” explains Ikoma. “Fish collagen is a material that has the potential of becoming the key material for the development of artificial bones and bone therapy.

In addition to the regeneration of bones from fish collagen, the Tanaka and Ikoma Research group is pursuing projects on nanomedicine and diagnostics. Notably, the Tokyo Institute of Technology group conducts research on tissue engineering and implantable biomaterials in collaboration with medical doctors and biologists. “An interdisciplinary approach with researchers from the medical and engineering fields is very crucial for success” says Ikoma.

In the fish collagen experiments, the researchers have focused on type I collagen extracted from tilapia scales because the scale has little fat and is mainly composed of pure collagen. Intriguingly, Tilapia lives in warm fresh water and the scale collagen shows the highest denaturation (the change of collagen to gelatin) temperature at 36oC, and has no fishy odor.

The Tokyo Tech group has transferred the extraction technology of collagen from tilapia scale to a company. “Interestingly, the structure of collagen fibrils in fish scale is very similar to that of human corneal stroma,” says Ikoma. “So the investigation of fish scale will be useful for the reconstruction of corneal stroma.”

The unique characteristics of fish collagen show potential for the production of cosmetics. “We have already produced cosmetics including the fish collagen,” says Ikoma. “Next, we would like to produce the other products such as cell culture substrates, scaffolds for tissue engineering, and implantable biomaterials.”

Copyright : Tokyo Institute of Technology

References:

Effect of Glutaraldehyde on Properties of Membranes Prepared from Fish Scale Collagen (2012) MRS Proceedings. mrsf11-1418-mm06-04 (6 pages); DOI: http://dx.doi.org/10.1557/opl.2012.396
Zhefeng Xu (1), Toshiyuki Ikoma (1), Tomohiko Yoshioka (1), Motohiro Tagaya (1) , Satoshi Motozukaa (1,2), Rena Matsumoto (3), Toshimasa Uemura (3) and Junzo Tanaka (1)

1 Department of Metallurgy and Ceramics Science, Tokyo Institute Technology University, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8550 JAPAN
2 Department of Mechanical Engineering, Gifu National College of Technology, Kamimakuwa 2236-2, Motosu-si, Gifu 501-0495, JAPAN
3 Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 3-5-8562, JAPAN

Further information:

Hidekazu Ueda and Yukiko Tokida
Center for Public Information
Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp

Tel: +81-3-5734-2975
Fax: +81-3-5734-3661

About Tokyo Institute of Technology:

As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>