Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process controlling T cell growth and production identified

05.05.2009
Identifying one of the processes that plays a role in naïve and memory T-cells' growth and production could one day lead to better vaccines and possibly more effective cancer immunotherapy, said researchers at Baylor College of Medicine and Texas Children's Hospital in a report that appears in the current edition of Nature Immunology.

In previous work, Dr. Daniel Lacorazza, assistant professor of pathology at BCM, along with his research team, identified a transcription factor, ELF4, which regulates blood stem cells. A transcription factor is a protein that regulates how genes are translated into a form that leads to the making of the proteins associated with them.

"We knew ELF4 played a role in maintaining T cells," said Lacorazza, who is the principal investigator of the current study. "What we discovered was that ELF4 activates an inhibitor that leads to cell arrest, stopping naive T cells from proliferation."

A population of naïve CD8 T-cell is always circulating in the body and maintained at a constant level. Memory T cells are created when naïve CD8 T cells are activated to fight intracellular pathogens such as viruses or bacteria. The fight against infections prompts creation of memory T cells that then "remember" antigens or proteins found on cells infected with viruses or bacteria. In the future when same infections arise, memory T-cell enhances the body's ability to fight them.

Lacorazza and his research team focused on how ELF4 affected the process of inhibiting proliferation of CD8 T cells. Using mice generated to lack ELF4, researchers found that CD8 T-cells grew over time and acquired a "memory phenotype" without being exposed to any type of infections. At the same time, they determined that expression of the tumor suppressor gene called KLF4 was reduced in these mice.

"We discovered that ELF4 directly activates the tumor suppressor KLF4, which signals cell cycle arrest in naïve CD8 T cells," Lacorazza said. "This inhibitory process is important to T cells because it stops them from proliferating out of control." Cell cycle arrest means the cells do not go through the normal events of their life cycles: growth, replication and division. The description of cell intrinsic regulation of quiescence in normal T cells will provide insights on the pathobiology of lymphoid malignancies.

The researchers then immunized mice deficient for ELF4 to test their immune response. These mice had a larger memory T cell response, indicating that the absence of ELF4 eliminated control over the proliferation of CD8 T cells.

"If we can control ELF4 activation during vaccination, we can enhance long-term immune response, making a vaccine more effective," Lacorazza said.

"We could enhance in vitro T cell activation of T cells extracted from patients to heighten immune response", said Lacorazza. "In addition, a future line of study is to determine whether deletion of KLF4 expands pre-leukemic clones leading to overt leukemia in pediatric patients".

Lacorazza said these are still hypotheses, but understanding the process that controls T cell proliferation will help in future research.

Other researchers who were a part of the study include Takeshi Yamada and Chun Shik Park, both postdoctoral associates in the Pathology Department at BCM, and Maksim Mamonkin, graduate student in the Department of Immunology at BCM.

Funding for the research was provided by the National Institutes of Health, the Curtis Hankamer Basic Research Fund (Junion-Faculty Seed Award) and a pilot project of the Dan Duncan Cancer Center at BCM.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/news or www.bcm.edu/fromthelab.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/ni
http://www.bcm.edu/findings

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>