Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process controlling T cell growth and production identified

05.05.2009
Identifying one of the processes that plays a role in naïve and memory T-cells' growth and production could one day lead to better vaccines and possibly more effective cancer immunotherapy, said researchers at Baylor College of Medicine and Texas Children's Hospital in a report that appears in the current edition of Nature Immunology.

In previous work, Dr. Daniel Lacorazza, assistant professor of pathology at BCM, along with his research team, identified a transcription factor, ELF4, which regulates blood stem cells. A transcription factor is a protein that regulates how genes are translated into a form that leads to the making of the proteins associated with them.

"We knew ELF4 played a role in maintaining T cells," said Lacorazza, who is the principal investigator of the current study. "What we discovered was that ELF4 activates an inhibitor that leads to cell arrest, stopping naive T cells from proliferation."

A population of naïve CD8 T-cell is always circulating in the body and maintained at a constant level. Memory T cells are created when naïve CD8 T cells are activated to fight intracellular pathogens such as viruses or bacteria. The fight against infections prompts creation of memory T cells that then "remember" antigens or proteins found on cells infected with viruses or bacteria. In the future when same infections arise, memory T-cell enhances the body's ability to fight them.

Lacorazza and his research team focused on how ELF4 affected the process of inhibiting proliferation of CD8 T cells. Using mice generated to lack ELF4, researchers found that CD8 T-cells grew over time and acquired a "memory phenotype" without being exposed to any type of infections. At the same time, they determined that expression of the tumor suppressor gene called KLF4 was reduced in these mice.

"We discovered that ELF4 directly activates the tumor suppressor KLF4, which signals cell cycle arrest in naïve CD8 T cells," Lacorazza said. "This inhibitory process is important to T cells because it stops them from proliferating out of control." Cell cycle arrest means the cells do not go through the normal events of their life cycles: growth, replication and division. The description of cell intrinsic regulation of quiescence in normal T cells will provide insights on the pathobiology of lymphoid malignancies.

The researchers then immunized mice deficient for ELF4 to test their immune response. These mice had a larger memory T cell response, indicating that the absence of ELF4 eliminated control over the proliferation of CD8 T cells.

"If we can control ELF4 activation during vaccination, we can enhance long-term immune response, making a vaccine more effective," Lacorazza said.

"We could enhance in vitro T cell activation of T cells extracted from patients to heighten immune response", said Lacorazza. "In addition, a future line of study is to determine whether deletion of KLF4 expands pre-leukemic clones leading to overt leukemia in pediatric patients".

Lacorazza said these are still hypotheses, but understanding the process that controls T cell proliferation will help in future research.

Other researchers who were a part of the study include Takeshi Yamada and Chun Shik Park, both postdoctoral associates in the Pathology Department at BCM, and Maksim Mamonkin, graduate student in the Department of Immunology at BCM.

Funding for the research was provided by the National Institutes of Health, the Curtis Hankamer Basic Research Fund (Junion-Faculty Seed Award) and a pilot project of the Dan Duncan Cancer Center at BCM.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/news or www.bcm.edu/fromthelab.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/ni
http://www.bcm.edu/findings

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>