Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the secrets of the ryegrasses

21.06.2011
LMU chemists design a route for synthesis of loline alkaloids

LMU chemists led by Professor Dirk Trauner have developed a concise and efficient method for the synthesis of the alkaloid loline and related compounds.

Loline alkaloids are a biologically interesting group of natural products, which have unusual physicochemical and pharmacological characteristics, but are as of yet poorly understood. They are produced by fungal symbionts that infect weeds and forage grasses, and act as deterrents of insects and other herbivores. Some of the agents synthesized by endophytic fungi are toxic to grazing animals, producing a syndrome known as the staggers. Indeed, such toxic weeds (commonly called ryegrass or cockle) were much feared in antiquity and are mentioned both by Virgil and in the New Testament.

Lolines however are comparatively innocuous to mammalian herbivores, and might therefore be of some therapeutic use. The loline alkaloid temuline has attracted particular attention in another context because it can strongly bind carbon dioxide. Lolines are relatively small molecules and have a fairly simple structure, but chemical synthesis of the compounds has proven to be quite challenging. “Our synthetic route is highly efficient and, with a maximum of 10 steps, very short,” says Dirk Trauner, who led the project.

“It will allow us to make these compounds in sufficient quantities to enable their various aspects to be investigated in detail. We should then be able to dissect the complex network of interactions of the plants and their fungal parasites with insects and bacteria. We now plan to use our synthetic material to identify the receptor for loline alkaloids.” The project was carried out in the Center for Integrated Protein Science Munich (CIPSM), an LMU Cluster of Excellence. (suwe)

Publication:
An efficient synthesis of loline alkaloids
Mesut Cakmak, Peter Mayer and Dirk Trauner
Nature Chemistry online, 19 June 2011
Doi: 10.1038/nchem.1072
Contact:
Prof. Dr. Dirk Trauner
Department of Chemistry, LMU Munich
Phone: +49 (0) 89 / 2180 – 77800
Email: dirk.trauner@cup.uni-muenchen.de
Web: www.cup.uni-muenchen.de/oc/trauner/page7/page7

Luise Dirscherl | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>