Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precious metal could lead to next generation of cancer treatments

08.12.2008
A precious metal which has never before been used in a clinical setting is being developed as an anti-cancer agent by University of Warwick researchers.

The metal, osmium, is closely related to platinum, which is widely used to treat cancers in the form of the drug cisplatin. Most famously, the cyclist Lance Armstrong was treated with cisplatin for testicular cancer.

Now the researchers, based in the Department of Chemistry, at the University of Warwick, are working closely with Warwick Ventures, the university’s technology transfer office, to seek partners to help develop the potential of osmium through more extensive biological tests. The team will be presenting their work on 9 December at the national university technology showcase event, Bioversity.

Professor Peter Sadler, of the Department of Chemistry, explained: “Although cisplatin has been proven to be a very successful treatment; it is not useful for all kinds of cancer. It is also quite a toxic therapy, which can produce side effects and, from a clinical point of view, cells can also become resistant to platinum.”

Osmium, with its special chemical properties, offers a new potential solution to an unmet clinical need. It has shown huge promise in treating several different types of cancer cell, including ovarian and colon cancers which have been developed and tested in the laboratory. The metal also has another advantage in that it is a much cheaper alternative to platinum.

Professor Sadler, along with post-graduate researcher Sabine van Rijt, is working to develop new compounds using Osmium, which they hope will lead to the development of drugs which could be used in combination therapies alongside existing drugs such as cisplatin.

“The compounds we have been developing are very promising,” says Sabine van Rijt. “We’re building a picture of how different compounds might interact with DNA in cancer cells. By making changes to the coating, or ligand, on the metal, we can also affect not just how it interacts, but the rate of interaction.

During this design process we can also make changes which can control the activity of the compound.”

She added: “Another advantage is that these compounds are not cross-resistant with platinum. They kill the cancerous cells in a different way, so they could be used alongside platinum in combination therapies.”

The team’s research is being presented on 9 December at Bioversity 2008, a national university technology showcase event. Bioversity is part of the biotechnology conference, Genesis 2008, organised by The London Biotechnology Network.

Peter Dunn | alfa
Further information:
http://www.ventures.warwick.ac.uk
http://www.genesisconference.com
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>