Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Power, Longer Life, Increased Safety

11.03.2010
Tin–sulfur–lithium-ion battery as alternative to conventional lithium batteries

A common problem with notebook computers is that the battery delivers power for far too short a time, which only gets shorter as it gets older. If you don’t take great care with your rechargeable battery at all times, its life drains away quite fast.

Improved batteries that deliver significantly more energy, last longer, and are safer are thus the subject of current research. Bruno Scrosati and Jusef Hassoun at the University of Rome have now developed a highly promising approach to a new variety of lithium-ion battery, which, as the researchers report in the journal Angewandte Chemie, may fulfill these criteria.

The dilemma is this: Mobile phones, notebook computers, smart phones, and PDAs keep getting smaller, whilst their energy requirements grow. The batteries can’t keep up. Theoretically, lithium–sulfur batteries would be the energy source of choice, because they deliver significantly more energy – by mass – than conventional lithium-ion batteries. However, their practical application suffers from the fact that their electrodes slowly dissolve, which results in a loss of capacity. Furthermore, lithium metal can form dendritic deposits that cause short circuits. This is why commercial “lithium” batteries do not contain lithium metal electrodes, but a material that can absorb and then release lithium ions, which is usually graphite. This type of lithium-ion cell supplies energy by transferring lithium ions only and delivers less energy.

The Italian researchers would like to combine the advantages of both types of battery to make long-lived, storable, safe, and easily produced high-capacity batteries. Their new type of lithium-metal-free cell uses a cathode (negative electrode) made of a carbon/lithium sulfide composite. The organic electrolyte solution is replaced by a lithium-ion-containing liquid enclosed in a gel–polymer membrane. The polymer shields the liquid from the electrodes. The solution is also saturated with lithium sulfide. Both of these measures minimize the dissolution of the electrode components. For their anode (positive electrode), Scrosati and Hassoun selected nanoscopic tin particles that are enclosed in a protective carbon matrix.

The electrochemical process occurs as follows: At the cathode, lithium sulfide is split into elemental sulfur and lithium ions. This process releases electrons. The lithium ions migrate through the electrolyte membrane to the anode, where they take up electrons to become uncharged lithium atoms, which are then bound into an alloy by the tin nanoparticles. The process is reversible so that the battery can be charged again and again. With a specific energy of about 1100 W h/kg, the new cell surpasses all previous lithium-metal-free batteries. With this large value of energy density, this new battery may also finds its way as power source of choice for electric vehicle applications.

Author: Bruno Scrosati, Università degli Studi di Roma La Sapienza, Roma (Italy), http://www.chem.uniroma1.it/dinamico/scheda_doc1.php?userid=scrosati

Title: A High-Performance Polymer Tin Sulfur Lithium Ion Battery

Angewandte Chemie International Edition,
Permalink: http://dx.doi.org/10.1002/anie.200907324

Bruno Scrosati | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.uniroma1.it/dinamico/scheda_doc1.php?userid=scrosati

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>