Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Power of Flowers: Research Sprouts a Closer Look at Sunflower Genetics

23.01.2012
A Kansas State University researcher's plant genetic work is rooted in the sunflower state.
Mark Ungerer, associate professor of biology, has two major research projects that involve evolutionary change in sunflowers, the state flower of Kansas.

"What we do in the lab is referred to as ecological or evolutionary genetics," Ungerer said. "We study naturally occurring species and try to understand the genetic basis or genetic underpinnings of natural variation."

There are more than 50 species of sunflowers. Some are annual plants -- meaning they germinate, flower and die in one year -- and some are perennial plants that grow and bloom every year and live longer.

Ungerer's first project focuses on five species of annual sunflowers: two parent species and three hybrid derivative species. All three hybrid species arose from ancient hybridization events between the same two parents -- an unusual way for new species to develop, Ungerer said.

"What also makes the system unique is that the hybrid species are recently derived in the last half a million years," Ungerer said. "It seems like a long time, but that is actually pretty recent in evolutionary terms."

But there is another interesting aspect of the three hybrid species: While they have the same number of chromosomes as the two parent species, the hybrid species' genomes are 50 to 75 percent larger in terms of the amount of DNA.

Ungerer's research team made an important discovery that explains this DNA difference. The researchers studied long terminal repeat, or LTR, retrotransposons, which are mobile genetic elements that can copy themselves and insert the copies into various chromosome locations. Ungerer's team discovered that the hybrid species and the parent species were different because of massive proliferation events, or rapid reproduction, of the LTR retrotransposons. Not only that, these transposable elements are still active and cause mutations in sunflowers.

"It's like a smoking gun," Ungerer said. "It helps us study the process."

The researchers now want to know the triggers of these proliferation events and how the species have reacted to this increase in genome size. Ungerer has received $610,000 from the National Science Foundation to study these rapid proliferation events and how they affect the evolution of the hybrid sunflowers.

"Although virtually all plants and animals have these types of sequences in their genomes, we still know very little about what phenomena cause them to amplify and make extra copies of themselves," Ungerer said.

Ungerer is studying two naturally occurring phenomena -- hybridization and stress -- that are hypothesized to cause proliferation of these mobile DNA sequences. The group of five annual sunflowers provides an excellent system to study the roles of hybridization and stress because not only have the three hybrid species arisen from ancient hybridization events, but they also are locally adapted to harsh and stressful environments, unlike their parental species. Two of the hybrid species grow in the desert and the third hybrid species grows in salt marshes, Ungerer said.

Ungerer's second project looks at clinal variation of a perennial sunflower species. This species has a wide geographic distribution across central North America and grows in areas from Texas north to Manitoba, Canada. Ungerer wants to understand population differences between sunflowers in different parts of the region.

For this research, Ungerer's team is conducting common garden experiments, which involve gathering seeds from each of the populations across central North America. The Kansas seeds came from the Konza Prairie Biological Station. The seeds are then grown in the same common garden at Kansas State University.

"If you see differences among plants in a common garden experiment, you attribute that to genetic differences of populations at these different locations," Ungerer said. "We have found striking differences."

Some of these striking differences include germination and flowering time. For example, because the growing season in Manitoba is much shorter, sunflowers grow quickly and flower in about two months. In Texas, where the growing season is much longer, sunflowers grow much slower and the plants grow much larger before they flower in about seven months.

"Now we are trying to expand this research to look at some of the underlying genetics of these differences," Ungerer said.

His second project has been funded by the K-State Integrated Genomic Facility and the Division of Biology's Research Experiences for Undergraduates program.

In addition to his sunflower work, Ungerer has several ongoing research projects. He is studying freezing tolerance of Arabidopsis thaliana, a model plant species, across several geographic regions. He is also working with other K-State biology researchers to study mating patterns of the bison herd on the Konza Prairie.

Mark Ungerer, 785-532-5845, mcungere@k-state.edu

Mark Ungerer | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>