Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist seeks to identify genes causing rare cancer

11.07.2013
Dr Vincent Keng Wee-keong of HKPolyU and international colleagues have developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

Working in collaboration with an international team of researchers, Dr Vincent Keng Wee-keong, Assistant Professor of the Hong Kong Polytechnic University (PolyU)'s Department of Applied Biology and Chemical Technology, has developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), thus paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

MPNST is a rare but aggressive type of tumor that is associated with extremely poor prognosis. It is believed that many genetic changes are required for both sporadic and NF1-associated tumor development, although the exact cause of MPNSTs is still not yet known. MPNSTs can occur sporadically or in the context of neurofibromatosis type 1 (gene NF1) tumor syndrome, a disease that occurs approximately one in 3,000 people worldwide. Of great concern is that around 10 percent of these NF1 patients will develop MPNSTs.

Due to the invasiveness and high metastatic occurrence of MPNSTs, current treatment regimes such as surgical resection, radiotherapy and chemotherapeutic treatments have proven to be ineffective. The current five-year survival rate for patients with metastatic MPNST is less than 25 percent. "We desperately need more accurate models of the disease in order to cure it", Dr Vincent Keng said.

In order to identify genes leading to MPNSTs, Dr Keng has been collaborating with researchers from University of Minnesota, Cincinnati Children's Hospital and University of Florida in the US; and the Institute of Predictive and Personalized Medicine of Cancer in Spain. The team has adopted The Sleeping Beauty transposon method, which is a powerful genetic tool and an unbiased approach, in a tissue-specific manner in mice.

Further analysis of these MPNSTs in this study uncovered 745 cancer candidate genes (both known and new genes). Genes and signaling pathways that cooperate in MPNST formation were also identified. In this study, the role of FOXR2 was demonstrated as an important oncogene or cancer-causing gene for MPNSTs development and turning off this gene drastically decreases the growth ability of these tumors. Researchers also found many of the MPNSTs have dual loss of NF1 and PTEN genes, both of which can suppress tumor formation.

Dr Vincent Keng has also previously shown that this pairing of lost genes causes MPNST formation in a paper published in Cancer Research last year. In his laboratory, research is continuing in both mouse models and human cell lines to obtain more effective therapeutic regimes for this deadly disease.

The MPNSTs research was published earlier this year in the international journal Nature Genetics (May 2013 Issue).

Press Contacts
Dr Vincent Keng Wee-keong
Department of Applied Biology and Chemical Technology
Tel: (852) 3400 8728
Email: vincent.keng@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>