Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist seeks to identify genes causing rare cancer

11.07.2013
Dr Vincent Keng Wee-keong of HKPolyU and international colleagues have developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

Working in collaboration with an international team of researchers, Dr Vincent Keng Wee-keong, Assistant Professor of the Hong Kong Polytechnic University (PolyU)'s Department of Applied Biology and Chemical Technology, has developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), thus paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

MPNST is a rare but aggressive type of tumor that is associated with extremely poor prognosis. It is believed that many genetic changes are required for both sporadic and NF1-associated tumor development, although the exact cause of MPNSTs is still not yet known. MPNSTs can occur sporadically or in the context of neurofibromatosis type 1 (gene NF1) tumor syndrome, a disease that occurs approximately one in 3,000 people worldwide. Of great concern is that around 10 percent of these NF1 patients will develop MPNSTs.

Due to the invasiveness and high metastatic occurrence of MPNSTs, current treatment regimes such as surgical resection, radiotherapy and chemotherapeutic treatments have proven to be ineffective. The current five-year survival rate for patients with metastatic MPNST is less than 25 percent. "We desperately need more accurate models of the disease in order to cure it", Dr Vincent Keng said.

In order to identify genes leading to MPNSTs, Dr Keng has been collaborating with researchers from University of Minnesota, Cincinnati Children's Hospital and University of Florida in the US; and the Institute of Predictive and Personalized Medicine of Cancer in Spain. The team has adopted The Sleeping Beauty transposon method, which is a powerful genetic tool and an unbiased approach, in a tissue-specific manner in mice.

Further analysis of these MPNSTs in this study uncovered 745 cancer candidate genes (both known and new genes). Genes and signaling pathways that cooperate in MPNST formation were also identified. In this study, the role of FOXR2 was demonstrated as an important oncogene or cancer-causing gene for MPNSTs development and turning off this gene drastically decreases the growth ability of these tumors. Researchers also found many of the MPNSTs have dual loss of NF1 and PTEN genes, both of which can suppress tumor formation.

Dr Vincent Keng has also previously shown that this pairing of lost genes causes MPNST formation in a paper published in Cancer Research last year. In his laboratory, research is continuing in both mouse models and human cell lines to obtain more effective therapeutic regimes for this deadly disease.

The MPNSTs research was published earlier this year in the international journal Nature Genetics (May 2013 Issue).

Press Contacts
Dr Vincent Keng Wee-keong
Department of Applied Biology and Chemical Technology
Tel: (852) 3400 8728
Email: vincent.keng@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>