Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist seeks to identify genes causing rare cancer

11.07.2013
Dr Vincent Keng Wee-keong of HKPolyU and international colleagues have developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

Working in collaboration with an international team of researchers, Dr Vincent Keng Wee-keong, Assistant Professor of the Hong Kong Polytechnic University (PolyU)'s Department of Applied Biology and Chemical Technology, has developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), thus paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

MPNST is a rare but aggressive type of tumor that is associated with extremely poor prognosis. It is believed that many genetic changes are required for both sporadic and NF1-associated tumor development, although the exact cause of MPNSTs is still not yet known. MPNSTs can occur sporadically or in the context of neurofibromatosis type 1 (gene NF1) tumor syndrome, a disease that occurs approximately one in 3,000 people worldwide. Of great concern is that around 10 percent of these NF1 patients will develop MPNSTs.

Due to the invasiveness and high metastatic occurrence of MPNSTs, current treatment regimes such as surgical resection, radiotherapy and chemotherapeutic treatments have proven to be ineffective. The current five-year survival rate for patients with metastatic MPNST is less than 25 percent. "We desperately need more accurate models of the disease in order to cure it", Dr Vincent Keng said.

In order to identify genes leading to MPNSTs, Dr Keng has been collaborating with researchers from University of Minnesota, Cincinnati Children's Hospital and University of Florida in the US; and the Institute of Predictive and Personalized Medicine of Cancer in Spain. The team has adopted The Sleeping Beauty transposon method, which is a powerful genetic tool and an unbiased approach, in a tissue-specific manner in mice.

Further analysis of these MPNSTs in this study uncovered 745 cancer candidate genes (both known and new genes). Genes and signaling pathways that cooperate in MPNST formation were also identified. In this study, the role of FOXR2 was demonstrated as an important oncogene or cancer-causing gene for MPNSTs development and turning off this gene drastically decreases the growth ability of these tumors. Researchers also found many of the MPNSTs have dual loss of NF1 and PTEN genes, both of which can suppress tumor formation.

Dr Vincent Keng has also previously shown that this pairing of lost genes causes MPNST formation in a paper published in Cancer Research last year. In his laboratory, research is continuing in both mouse models and human cell lines to obtain more effective therapeutic regimes for this deadly disease.

The MPNSTs research was published earlier this year in the international journal Nature Genetics (May 2013 Issue).

Press Contacts
Dr Vincent Keng Wee-keong
Department of Applied Biology and Chemical Technology
Tel: (852) 3400 8728
Email: vincent.keng@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>