Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do polar bears stay warm?

11.02.2014
Research finds an answer in their genes

New study is part of a broader genomic research program aimed at understanding what makes a polar bear a polar bear


A male polar bear. Credit: U.S. Geological Survey, Steven C. Amstrup

In the winter, brown and black bears go into hibernation to conserve energy and keep warm.

But things are different for their Arctic relative, the polar bear. Within this high-latitude species, only pregnant females den up for the colder months.

So how do the rest survive the extreme Arctic winters?

New research points to one potential answer: genetic adaptations related to the production of nitric oxide, a compound that cells use to help convert nutrients from food into energy or heat.

In a new study, a team led by the University at Buffalo reports that genes controlling nitric oxide production in the polar bear genome contain genetic differences from comparable genes in brown and black bears.

“With all the changes in the global climate, it becomes more relevant to look into what sorts of adaptations exist in organisms that live in these high-latitude environments,” said lead researcher Charlotte Lindqvist, PhD, UB assistant professor of biological sciences.

“This study provides one little window into some of these adaptations,” she said. “Gene functions that had to do with nitric oxide production seemed to be more enriched in the polar bear than in the brown bears and black bears. There were more unique variants in polar bear genes than in those of the other species.”

The paper, titled “Polar Bears Exhibit Genome-Wide Signatures of Bioenergetic Adaptation to Life in the Arctic Environment,” appeared Feb. 6 in the journal Genome Biology and Evolution.

Co-authors include scientists from UB, Penn State University, the U.S. Geological Survey Alaska Science Center, Durham University and the University of California, Santa Cruz.

The genetic adaptations the research team saw are important because of the crucial role that nitric oxide plays in energy metabolism.

Typically, cells transform nutrients into energy. However, there is a phenomenon called adaptive or non-shivering thermogenesis, where the cells will produce heat instead of energy in response to a particular diet or environmental conditions.

Levels of nitric oxide production may be a key switch triggering how much heat or energy is produced as cells metabolize nutrients, or how much of the nutrients is stored as fat, Lindqvist said.

“At high levels, nitric oxide may inhibit energy production,” said Durham University’s Andreanna Welch, PhD, first author and a former postdoctoral researcher at UB with Lindqvist. “At more moderate levels, however, it may be more of a tinkering, where nitric oxide is involved in determining whether — and when — energy or heat is produced.”

The research is part of a larger research program devoted to understanding how the polar bear has adapted to the harsh Arctic environment, Lindqvist said.

In 2012, she and colleagues reported sequencing the genomes of multiple brown bears, black bears and polar bears.

In a paper in the Proceedings of the National Academy of Sciences, the team said comparative studies between the DNA of the three species uncovered some distinctive polar bear traits, such as genetic differences that may affect the function of proteins involved in the metabolism of fat — a process that’s very important for insulation.

In the new study, the scientists looked at the mitochondrial and nuclear genomes of 23 polar bears, three brown bears and a black bear.

The research was funded by the University at Buffalo and the National Fish and Wildlife Foundation.

Media Contact Information

Charlotte Hsu
Media Relations Manager,
Architecture, Economic Development, Sciences, Urban and Regional Planning
Tel: 716-645-4655
chsu22@buffalo.edu

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu/news/releases/2014/02/014.html

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>