Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pocket chemistry: DNA helps glucose meters measure more than sugar

25.07.2011
Glucose meters arent just for diabetics anymore. Thanks to University of Illinois chemists, they can be used as simple, portable, inexpensive meters for a number of target molecules in blood, serum, water or food.

Chemistry professor Yi Lu and postdoctoral researcher Yu Xiang published their findings in the journal Nature Chemistry.

“The advantages of our method are high portability, low cost, wide availability and quantitative detection of a broad range of targets in medical diagnostics and environmental monitoring,“ Lu said. “Anyone could use it for a wide range of detections at home and in the field for targets they may care about, such as vital metabolites for a healthy living, contaminants in their drinking water or food, or potential disease markers.”

A glucose meter is one of the few widely available devices that can quantitatively detect target molecules in a solution, a necessity for diagnosis and detection, but only responds to one chemical: glucose. To use them to detect another target, the researchers coupled them with a class of molecular sensors called functional DNA sensors.

Functional DNA sensors use short segments of DNA that bind to specific targets. A number of functional DNAs and RNAs are available to recognize a wide variety of targets.

They have been used in the laboratory in conjunction with complex and more expensive equipment, but Lu and Xiang saw the potential for partnering them with pocket glucose meters.

The DNA segments, immobilized on magnetic particles, are bound to the enzyme invertase, which can catalyze conversion of sucrose (table sugar) to glucose. The user adds a sample of blood, serum or water to the functional DNA sensor to test for drugs, disease markers, contaminants or other molecules. When the target molecule binds to the DNA, invertase is released into the solution. After removing the magnetic particle by a magnet, the glucose level of the sample rises in proportion to the amount of invertase released, so the user then can employ a glucose meter to quantify the target molecule in the original sample.

“Our method significantly expands the range of targets the glucose monitor can detect,” said Lu, who also is affiliated with the Beckman Institute for Advanced Science and Technology and with the Frederick Seitz Materials Research Lab at U. of I. “It is simple enough for someone to use at home, without the high costs and long waiting period of going to the clinics or sending samples to professional labs.”

The researchers demonstrated using functional DNA with glucose meters to detect cocaine, the disease marker interferon, adenosine and uranium. The two-step method could be used to detect any kind of molecule that a functional DNA or RNA can bind.

Next, the researchers plan to further simplify their method, which now requires users to first apply the sample to the functional DNA sensor and then to the glucose meter.

“We are working on integrating the procedures into one step to make it even simpler,” Lu said. “Our technology is new and, given time, it will be developed into an even more user-friendly format.”

The U.S. Department of Energy, the National Institutes of Health and the National Science Foundation supported this work.

Editor’s notes:To reach Yi Lu, call 217-333-2619; email yi-lu@illinois.edu.

The paper, Using Personal Glucose Meters and Functional DNA Sensors to Quantify a Variety of Analytical Targets, is available from the U. of I. News Bureau.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: CHEMISTRY DNA DNA sensors Glucose Glucose meters Pocket RNA materials research medical diagnostics

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>