Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plugging leaky blood vessels to save vision

12.05.2014

Bioengineering a safe treatment for retinopathy, the leading cause of vision loss in Canada

A new drug approach has been developed for safer clean-up of deformed blood vessels in the eye by a research team at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital in Toronto.

The growth of malformed blood vessels that can burst is a leading cause of vision loss in North America. Retinopathy and retina degeneration are associated with premature birth, with diabetes, and with increasing age.

Research just published by Dr. Andras Nagy and co-authors shows both safety and effectiveness in their bioengineered compound when treating retinopathy in mice. The therapeutic, which they called "Sticky-trap," shuts down tiny deformed blood vessels in the eye without affecting healthy vessels in other sites of the body.

... more about:
»Medicine »Sinai »blood »diseases »healthy »leaky »retinopathy

The research appears in EMBO Molecular Medicine, which published a separate editorial stating that the compound "holds great promise as a strategy that could be rapidly translated into clinical practice. […] We expect that Sticky-trap and future related molecules will have significant impact on the field of tumour biology in local control of recurrent disease. […]"

Dr. Nagy is a Senior Investigator at the Lunenfeld-Tanenbaum and holds a Canada Research Chair in Stem Cells and Regeneration. He is a Professor in the Department of Obstetrics and Gynacology at University of Toronto and an Investigator at the McEwen Centre for Regenerative Medicine. Co-authors include colleagues from University of California Los Angeles, The Scripps Research Institute (La Jolla CA), University of Toronto, and the Lunenfeld-Tanenbaum.

Selective action is key to safety

Like some other treatments for retinopathy, Sticky-trap is injected into the eye. The potential game-changer is Sticky-trap's safety profile. It is stable and long-lasting once in the eye. If the compound gets into the circulation, it quickly inactivates – ensuring that it does not affect other blood vessels, tissues, and organs.

A problem in this research arena – called antiangiogenesis – has been finding a compound that is selective, closing off abnormal blood vessels only in the diseased organ while leaving all others intact. "That's difficult, and it's what makes this research high-risk as well as high-impact," Dr. Nagy says.

Type 2 diabetes illustrates the challenge. "Patients with diabetic retinopathy are losing vision because blood vessels in their eyes overgrow, become deformed and burst, often tearing the retina in the process. Drugs that suppress the excess vessel formation in the eye could negatively affect healthy organs if they escape into the blood, causing kidney function problems, poor wound healing, and hypertension," Dr. Nagy adds. These side effects are serious health threats that the Sticky-trap approach can avoid.

Advanced bioengineering

Over the nine years it took to bring the project to fruition, Dr. Nagy's team used cutting-edge genetic and pharmacological techniques to engineer the new two-step biologics. Sticky-trap includes a binding component that attaches to the surface of cells, ensuring that it remains in place and is stable, as well as the biologically active component. "That's important when a treatment involves injection directly into a diseased tissue," says first author Dr. Iacovos Michael, a post-doctoral fellow in the Nagy lab. "The longer-acting it is, the fewer injections a patient will need." He adds that the project "is just the beginning for the establishment of a new class of pharmacological entity, 'sticky' biologics, characterized by localized, targeted activity. The same principle could be used to develop similar local-acting biologics for other conditions such as inflammatory and autoimmune diseases."

Dr. Nagy is renowned for his work in stem cells, blood vessel biology, and creating genetic tools in cancer cells, among other areas. His team is also working on applications of the two step Sticky-trap for solid tumours.

Upon publication on May 6, Sticky-trap became available to biotech and pharmaceutical companies to adapt and develop.

"The significant advance in this approach is its built-in precision guidance system," says Dr. Jim Woodgett, Director of the Lunenfeld-Tanenbaum. "Worldwide research efforts have developed powerful agents that can treat diseased tissues but if they cannot be steered to where they are needed, they can also cause collateral damage. The initial application to diabetic retinopathy shows proof-of-principle in a very important disease, but the approach can be adapted to other powerful drugs and diseases where localized activity is needed."

###

The research paper is "Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye," on-line May 6 2014 in EMBO Molecular Medicine. Funding was supported by the Canadian Institutes for Health Research, McEwen Centre for Regenerative Medicine, Robert and Sheryl McEwen, Canadian Cancer Society Research Institute, Mount Sinai Hospital Foundation, National Eye Institute, and Lowy Medical Research Institute.

For interview:

Polly Thompson
Lunenfeld-Tanenbaum Research Institute
Mount Sinai Hospital
Toronto, Canada
(416) 586-4800 #2046
pthompson@lunenfeld.ca

Polly Thompson | Eurek Alert!
Further information:
http://www.lunenfeld.ca/

Further reports about: Medicine Sinai blood diseases healthy leaky retinopathy

More articles from Life Sciences:

nachricht World’s fastest algorithm for recognising regular DNA sequences
04.05.2015 | Europäische Akademie Bozen - European Academy Bozen/Bolzano

nachricht Proteomics identifies DNA repair toolbox
04.05.2015 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015 | Life Sciences

Interzum 2015: WPC furniture with low flammability

04.05.2015 | Trade Fair News

Improved detection of radio waves from space

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>