Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants Take a Hike as Temperatures Rise

11.02.2009
Plants are flowering at higher elevations in Arizona's Santa Catalina Mountains as summer temperatures rise, according to new research from the University of Arizona in Tucson.
The flowering ranges of 93 plant species moved uphill during 1994 to 2003, compared to where the same species flowered the previous ten years. During the 20-year study period, summer temperatures in the region increased about

1.8 degree Fahrenheit (1 degree C.).

"For years, probably decades now, scientists have been trying to understand how species are going to respond to the anticipated global changes and global warming," said Theresa Crimmins, research specialist for the UA's Arid Lands Information Center and the network liaison for the National Phenology Network.

To better understand how plants respond to climate change, Crimmins and her husband, UA climatologist Michael Crimmins, teamed up with naturalist Dave Bertelsen. He's been hiking the Finger Rock trail about one to two times a week since 1983 and recording what plants were in flower.

The 5-mile hike starts in desert scrub vegetation and climbs 4158 feet (1200 meters), ending in pine forest. Bertelsen has completed 1,206 round-trip hikes and recorded data along the trail for nearly 600 plant species, he said in an e-mail.

Lead author Theresa Crimmins said Bertelsen's data shows that some species flowered farther upslope than before, others stopped flowering at lower elevations, and some species did both.

Because some plant species are moving and others staying put, she said the changes may divide plant communities, increase the growth of invasive species and even cause local extinctions by affecting the food sources of local insects and animals.

"I think we can be confident that things are going to continue to change and we don't necessarily know the ripple effects of all these changes in flowering ranges," Crimmins said.

Theresa Crimmins, Michael Crimmins, assistant professor and climate science extension specialist for the UA's department of soil, water, and environmental science, and Bertelsen will publish their paper, "Flowering range changes across an elevation gradient in response to warming summer temperatures." The paper is published this week in the online Early View of the journal Global Change Biology. The U.S. National Park Service provided data management support for the project.

Many scientists have wanted to study the movement of flowering ranges, but lack the years of detailed data required for this research, Theresa Crimmins said.

At a meeting about monitoring plant species held by the U.S. Bureau of Land Management in 2005, Crimmins discussed his need for data to study the effect of climate change on ecosystems over time.

Bertelsen was at the meeting and told Crimmins about the extensive data he had collected during his many years hiking Finger Rock trail. Bertelsen had the sense some plants were flowering farther uphill and had observed many changes he attributed to drought.

Bertelsen had begun hiking the trail in 1981 and fell in love with the flora and fauna. He had just taken up macrophotography and took close-up pictures of all types of plants and animals while recording his observations in a journal.

"Somebody once said that I have this compulsion. I don't feel driven at all, it's drawn. If I miss a week, I miss it. I just feel that I'm really part of that canyon and it's a part of what I am. It's just good old human curiosity," Bertelsen said. "There's always something different. It's just absolutely amazing."

In 1983 he developed a checklist to document each species in bloom along each of five one-mile long trail segments. Thus, on a single day, if a particular plant was seen in bloom in three segments, there would be three different records. Bertelsen collected flowering data from 1984 to 2003.

To see whether the plants had shifted their flowering, the Crimminses compared Bertelsen's location records from 1984 to 1993 for 363 plant species with his records from 1994 to 2003 for the same species.

The Crimminses used climate data from six National Weather Service Cooperative Observer Network stations surrounding the trail to see how the temperature varied during the 20-year study period.

The Crimminses' collaboration with Bertelsen is a great example of how scientists and amateur naturalists can work together, Theresa Crimmins said.

As part of its mission, the National Phenology Network encourages such collaborations to document events in the life cycles of plants and other organisms.

Theresa and Michael Crimmins plan to do additional analyses of the data to determine whether climate change is also causing flowers to bloom earlier in the year.

"The changes are happening fast enough now that more eyes on the ground are going to be much more useful as the human species tries to understand how these other systems, that we rely upon so dearly, are going to change,"

Theresa Crimmins said.

"We can really start to think about what the true impacts of those changes are and how can we mitigate these impacts."

This news release was written by University of Arizona NASA Space Grant Intern Megan Levardo

Researcher Contact Information:
Theresa Crimmins
(520) 792-0481
theresam@email.arizona.edu
Michael Crimmins
(520) 626-4244
crimmins@email.arizona.edu
Related Web sites:
National Phenology Network
http://www.usanpn.org/
Michael Crimmins
http://ag.arizona.edu/swes/people/cv/crimmins.htm
http://cals.arizona.edu/climate/
UA Office of Arid Land Studies
http://www.arid.arizona.edu/index.asp

Mari N. Jensen | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>