Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plague alters cell death to kill host

15.04.2014

Scientists discover how bacteria Y. pestis overwhelms the lungs to cause pneumonic plague

Northwestern Medicine scientists are continuing to unravel the molecular changes that underlie one of the world's deadliest and most infamous respiratory infections.

When the bacterium Yersinia pestis enters the lungs, it causes pneumonic plague, a disease that is 100 percent fatal if untreated. The way in which Y. pestis evades the immune system and kills people in a matter of days has largely confounded scientists, until now.

Following a 2007 study demonstrating that the presence of a protein called the plasminogen activator protease (Pla) is required for Y. pestis to live inside the lungs, Wyndham Lathem, PhD, assistant professor in Microbiology-Immunology, has found what role Pla plays during disease.

... more about:
»Allergy »Cell »Infectious »Medicine »apoptosis »death »protein »receptor

The activator shuts down a molecule, Fas ligand (FasL), which stimulates a form of programmed cell death known as apoptosis. The result is a disrupted immune response during infection. This allows Y. pestis to overwhelm the lungs, causing death.

"This is the first time anyone has shown how bacteria can subvert apoptotic cell death by directly destroying Fas ligand," said Lathem, a member of the Center for Genetic Medicine and Interdepartmental Immunobiology Center.

The findings were published April 9 in Cell Host & Microbe.

To study its effects, scientists added Pla to glass slides with various fluorescently-tagged proteins. If the protease showed an affinity for a specific protein, it would chew off pieces, making it appear less florescent when viewed under a microscope.

"We knew that Pla must be chopping up host proteins in some manner and we looked to discover exactly what proteins were being affected," said first author Adam Caulfield, a research associate in Lathem's lab.

"As we reviewed possible hits, the 'aha moment' came when we saw Fas ligand on the list of affected proteins, because we know Fas is an integral receptor for controlling cell death," said Lathem. "The process of Pla degrading Fas ligand effectively prevents the lungs from being able to clear the infection."

After verifying their findings using cell cultures, Lathem conducted preclinical tests using mice, arriving at the same conclusion.

"Now that we have identified this as a method by which plague bacteria can manipulate the immune system, we have something to look for when studying other respiratory infections," Lathem said. "This could be a common feature, where we see other bacteria manipulating cell death pathways by altering Fas signaling."

Pneumonic plague is unique in that it is the only type of plague with an ability to spread from person to person. It is treatable if caught early, but after 24 hours, antibiotics are rendered useless.

Lathem believes that a restoration of Fas signaling may give antibiotics more time to work, and scientists in his lab are exploring that possibility. They will also be looking at different bacterial infections to see if any manipulate cell death by altering Fas signaling in a similar manner.

###

The work was supported by National Institute of Allergy and Infectious Diseases at National Institutes of Health grants T32 AI007476 and R01 AI093727.

Marla Paul | Eurek Alert!
Further information:
http://www.northwestern.edu

Further reports about: Allergy Cell Infectious Medicine apoptosis death protein receptor

More articles from Life Sciences:

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

nachricht Bearded dragons show REM and slow wave sleep
29.04.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Candidalysin – the first toxin of Candida albicans

29.04.2016 | Life Sciences

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>