Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photosynthesis in 3D

15.01.2015

Photosynthesis sustains most of the life on our planet. It harvests energy from sunlight, while generating oxygen and removing carbon dioxide from the atmosphere. The process takes place in the chloroplasts of plants and algae. Researchers in the team of Wolfgang Baumeister at the Max Planck Institute of Biochemistry in Martinsried near Munich were recently successful in revealing the native structure of the chloroplast in 3D. 

“The results are the first of their kind and provide us with new insights into the mechanisms of photosynthesis”, says Benjamin Engel, first author of the study. The results were recently published in the journal eLife.


3D cross section of a chloroplast of the alga Chlamydomonas. Small tubular structures connect the thylakoids (green stacks on the left) with the RuBisCO-containing pyrenoid (right).

Figure: Ben Engel / Copyright: MPI of Biochemistry

So far, researchers who wanted to observe tiny structures inside of cells had to use traditional electron microscopy. However, this method requires several preparation steps that damage cellular structures and limit the resolution and accuracy of the images. By using cryo-electron tomography, Wolfgang Baumeister and his team are able to avoid these steps by rapidly freezing the cells. Moreover, this allows them to visualize the internal architecture of cells in a close-to-living state. Using this technique, the scientists investigated the three dimensional structures of chloroplasts in the alga Chlamydomonas, shedding new light on their assembly and function.

Two spatially separated reactions take place during photosynthesis: while energy is harvested from sunlight in compartments called the thylakoids, carbon dioxide is fixed to form sugar molecules in a compartment called the pyrenoid. It was not understood how these processes could be coordinated. The new 3D images revealed the detailed structures of tubules that connect the pyrenoid with the thylakoids, providing conduits for the diffusion of energy molecules and sugars between these two separated parts of the chloroplast (see figure).

Besides the fact that there are connections between the two reaction compartments, the scientists were also able to show how the thylakoids receive new proteins and how the photosynthesis enzymes are organized: “In the pyrenoid, there are many units of the photosynthesis enzyme RuBisCO”, explains Benjamin Engel, scientist at the MPI of Biochemistry. “Our results show for the first time that these units are packed in a hexagonal arrangement.” In the future, the authors aim to elucidate how this RuBisCO organization is formed and whether more proteins are involved. [HS]

Original publication:
Engel B, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM and Baumeister W: Native Architecture of the Chlamydomonas Chloroplast Revealed by In Situ Cryo-Electron Tomography. eLife, January 13, 2015.
DOI: 10.7554/eLife.04889

Contact:
Prof. Dr. Wolfgang Baumeister
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: baumeist@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/baumeister - Website of the Research Department "Molecular Structural Biology" (Prof. Dr. Wolfgang Baumeister)
http://www.biochem.mpg.de/news - More press releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>