Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PGD can permit the birth of healthy children to women carrying mitochondrial DNA disease

31.05.2011
Pre-implantation genetic diagnosis (PGD) can give women at risk of passing on a mitochondrial DNA disorder to their offspring a good chance of being able to give birth to an unaffected child, a researcher told the annual conference of the European Society of Human Genetics today (Monday).

Dr. Debby Hellebrekers, from Maastricht University Medical Centre, Maastricht, The Netherlands, said that the scientists' findings could have a considerable effect on preventing the transmission of mitochondrial diseases.

Mitochondria are cellular organelles involved in the conversion of the energy of food molecules into ATP, the molecule that powers most cellular functions. Disruptions of this energy-producing process, due to a defect in the mitochondrial DNA (mtDNA) or nuclear genes, can cause mitochondrial disorders which represent the most common group of inborn errors of metabolism. The manifestation of mtDNA disorders can be quite varied, but the diseases are almost always serious and, if they do not lead to death, they can result in life-long serious disability for children born with them. Symptoms of mtDNA disorders include loss of muscle co-ordination, visual and hearing problems, poor growth, mental retardation, heart, liver and kidney disease, neurological problems, respiratory disorders and dementia.

Prenatal diagnosis is in general not possible for mtDNA diseases, because the clinical signs cannot be reliably predicted from the mutation load (the relative amount of mutated mtDNA molecules) in chorionic villus sampling, so the team of scientists from The Netherlands, Australia, and the UK decided to look at whether PGD would be a better alternative. "If we could find a minimal level of mtDNA mutation load below which the chance for an embryo of being affected was acceptably low", said Dr. Hellebrekers, "we could offer PGD to women who otherwise had little chance of giving birth to a healthy child."

The researchers studied data on 159 different disease-causing mtDNA mutations derived from 327 unrelated patients or families. They combined data on muscle mutant levels – which correlate best with prenatal tissues - of affected individuals and relatives on their mothers' side who were not affected., and were able to predict that a 95% or greater chance of being unaffected was linked to a mtDNA mutant level of 18% or less.

Mitochondria have their own DNA, which is strictly inherited from the mother. Normal and mutant DNA co-exist in most disease-causing mtDNA mutations, and there is a threshold of mutant mtDNA which must be exceeded before clinical symptoms occur. The mtDNA mutation level inherited by the offspring of a female mutation carrier can vary greatly, and even in twin births, it is possible for one baby to receive considerably more of the mutant mtDNA molecules than the other.

"Being able to find the minimal level of mutant mtDNA below which the chances of passing on a disorder is low was therefore very important", said Dr. Hellebrekers. Currently, there are no effective treatments for mtDNA disorders. Although we cannot guarantee that a mutant mtDNA level of 18% or lower will result in the birth of an unaffected child, we think that the chances of having a healthy child are high enough to make using PGD in this instance morally acceptable.

"Our research enables us to give genetic counselling to women at risk with respect to their reproductive choices and to provide them, for the first time, with the opportunity to give birth to a healthy baby. The prevalence of mtDNA disorders is 1 in 5,000, which means that the families of about 146,000 patients in Europe can now have the option of having a healthy child. This is a choice that they do not currently have", she concluded.

Mary Rice | EurekAlert!
Further information:
http://www.eshg.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>