Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PGD can permit the birth of healthy children to women carrying mitochondrial DNA disease

31.05.2011
Pre-implantation genetic diagnosis (PGD) can give women at risk of passing on a mitochondrial DNA disorder to their offspring a good chance of being able to give birth to an unaffected child, a researcher told the annual conference of the European Society of Human Genetics today (Monday).

Dr. Debby Hellebrekers, from Maastricht University Medical Centre, Maastricht, The Netherlands, said that the scientists' findings could have a considerable effect on preventing the transmission of mitochondrial diseases.

Mitochondria are cellular organelles involved in the conversion of the energy of food molecules into ATP, the molecule that powers most cellular functions. Disruptions of this energy-producing process, due to a defect in the mitochondrial DNA (mtDNA) or nuclear genes, can cause mitochondrial disorders which represent the most common group of inborn errors of metabolism. The manifestation of mtDNA disorders can be quite varied, but the diseases are almost always serious and, if they do not lead to death, they can result in life-long serious disability for children born with them. Symptoms of mtDNA disorders include loss of muscle co-ordination, visual and hearing problems, poor growth, mental retardation, heart, liver and kidney disease, neurological problems, respiratory disorders and dementia.

Prenatal diagnosis is in general not possible for mtDNA diseases, because the clinical signs cannot be reliably predicted from the mutation load (the relative amount of mutated mtDNA molecules) in chorionic villus sampling, so the team of scientists from The Netherlands, Australia, and the UK decided to look at whether PGD would be a better alternative. "If we could find a minimal level of mtDNA mutation load below which the chance for an embryo of being affected was acceptably low", said Dr. Hellebrekers, "we could offer PGD to women who otherwise had little chance of giving birth to a healthy child."

The researchers studied data on 159 different disease-causing mtDNA mutations derived from 327 unrelated patients or families. They combined data on muscle mutant levels – which correlate best with prenatal tissues - of affected individuals and relatives on their mothers' side who were not affected., and were able to predict that a 95% or greater chance of being unaffected was linked to a mtDNA mutant level of 18% or less.

Mitochondria have their own DNA, which is strictly inherited from the mother. Normal and mutant DNA co-exist in most disease-causing mtDNA mutations, and there is a threshold of mutant mtDNA which must be exceeded before clinical symptoms occur. The mtDNA mutation level inherited by the offspring of a female mutation carrier can vary greatly, and even in twin births, it is possible for one baby to receive considerably more of the mutant mtDNA molecules than the other.

"Being able to find the minimal level of mutant mtDNA below which the chances of passing on a disorder is low was therefore very important", said Dr. Hellebrekers. Currently, there are no effective treatments for mtDNA disorders. Although we cannot guarantee that a mutant mtDNA level of 18% or lower will result in the birth of an unaffected child, we think that the chances of having a healthy child are high enough to make using PGD in this instance morally acceptable.

"Our research enables us to give genetic counselling to women at risk with respect to their reproductive choices and to provide them, for the first time, with the opportunity to give birth to a healthy baby. The prevalence of mtDNA disorders is 1 in 5,000, which means that the families of about 146,000 patients in Europe can now have the option of having a healthy child. This is a choice that they do not currently have", she concluded.

Mary Rice | EurekAlert!
Further information:
http://www.eshg.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>