Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PGD can permit the birth of healthy children to women carrying mitochondrial DNA disease

31.05.2011
Pre-implantation genetic diagnosis (PGD) can give women at risk of passing on a mitochondrial DNA disorder to their offspring a good chance of being able to give birth to an unaffected child, a researcher told the annual conference of the European Society of Human Genetics today (Monday).

Dr. Debby Hellebrekers, from Maastricht University Medical Centre, Maastricht, The Netherlands, said that the scientists' findings could have a considerable effect on preventing the transmission of mitochondrial diseases.

Mitochondria are cellular organelles involved in the conversion of the energy of food molecules into ATP, the molecule that powers most cellular functions. Disruptions of this energy-producing process, due to a defect in the mitochondrial DNA (mtDNA) or nuclear genes, can cause mitochondrial disorders which represent the most common group of inborn errors of metabolism. The manifestation of mtDNA disorders can be quite varied, but the diseases are almost always serious and, if they do not lead to death, they can result in life-long serious disability for children born with them. Symptoms of mtDNA disorders include loss of muscle co-ordination, visual and hearing problems, poor growth, mental retardation, heart, liver and kidney disease, neurological problems, respiratory disorders and dementia.

Prenatal diagnosis is in general not possible for mtDNA diseases, because the clinical signs cannot be reliably predicted from the mutation load (the relative amount of mutated mtDNA molecules) in chorionic villus sampling, so the team of scientists from The Netherlands, Australia, and the UK decided to look at whether PGD would be a better alternative. "If we could find a minimal level of mtDNA mutation load below which the chance for an embryo of being affected was acceptably low", said Dr. Hellebrekers, "we could offer PGD to women who otherwise had little chance of giving birth to a healthy child."

The researchers studied data on 159 different disease-causing mtDNA mutations derived from 327 unrelated patients or families. They combined data on muscle mutant levels – which correlate best with prenatal tissues - of affected individuals and relatives on their mothers' side who were not affected., and were able to predict that a 95% or greater chance of being unaffected was linked to a mtDNA mutant level of 18% or less.

Mitochondria have their own DNA, which is strictly inherited from the mother. Normal and mutant DNA co-exist in most disease-causing mtDNA mutations, and there is a threshold of mutant mtDNA which must be exceeded before clinical symptoms occur. The mtDNA mutation level inherited by the offspring of a female mutation carrier can vary greatly, and even in twin births, it is possible for one baby to receive considerably more of the mutant mtDNA molecules than the other.

"Being able to find the minimal level of mutant mtDNA below which the chances of passing on a disorder is low was therefore very important", said Dr. Hellebrekers. Currently, there are no effective treatments for mtDNA disorders. Although we cannot guarantee that a mutant mtDNA level of 18% or lower will result in the birth of an unaffected child, we think that the chances of having a healthy child are high enough to make using PGD in this instance morally acceptable.

"Our research enables us to give genetic counselling to women at risk with respect to their reproductive choices and to provide them, for the first time, with the opportunity to give birth to a healthy baby. The prevalence of mtDNA disorders is 1 in 5,000, which means that the families of about 146,000 patients in Europe can now have the option of having a healthy child. This is a choice that they do not currently have", she concluded.

Mary Rice | EurekAlert!
Further information:
http://www.eshg.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>