Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permanent Changes In Brain Genes May Not Be So Permanent After All

29.01.2014
In normal development, all cells turn off genes they don’t need, often by attaching a chemical methyl group to the DNA, a process called methylation.

Historically, scientists believed methyl groups could only stick to a particular DNA sequence: a cytosine followed by a guanine, called CpG. But in recent years, they have been found on other sequences, and so-called non-CpG methylation has been found in stem cells, and in neurons in the brain.

Now, a team of researchers at Johns Hopkins has discovered that non-CpG methylation occurs later and more dynamically in neurons than previously appreciated, and that it acts as a system of gene regulation, which can be independent of traditional CpG methylation.

In a study described in the January 28 issue of Nature Neuroscience, the Hopkins team describes this new gene control mechanism and how it may contribute to Rett Syndrome, a nervous system disorder affecting mostly girls that causes problems with movement and communication.

The team, led by Hongjun Song, Ph.D., professor of neurology and director of Johns Hopkins Medicine's Institute for Cell Engineering's Stem Cell Program, had found non-CpG methylation prevalent in neurons, a finding that surprised them, since this wasn’t found in any other cells besides stem cells.

By looking at what genes were being transcribed in neurons, he and his colleagues found that, like the form of methylation scientists had seen in stem cells, non-CpG methylation stops genes from being expressed. They also mapped the genome to find where non-CpG methylation happens, and found that it carves out its own niche, and are distributed in regions without CpG methlyation. "That was the first hint that maybe it can function independently of CpG methylation," Song says.

The new kind of methylation also seems to operate under different rules. Scientists have long thought methylation was final. Once a cytosine gets a methyl stuck to it, so the story went, that gene is shut off forever. "This became dogma," Song says. "Once cells become the right type, they don't change their identity or DNA methylation."

But non-CpG methylation seems to happen later, when the neuron is mature—and even after conventional wisdom said it was irreversible. The researchers learned this from an experiment in which they knocked out in adult mice the enzymes that attach methyl groups to DNA. They found the neurons still had just as much CpG methylation, but the non-CpG methylation dropped off. This suggests that non-CpG methylation is an active process, Song says, with methyl groups continually being taken off and put back on, adding to evidence that non-CpG methylation may play more of a role in managing operations in mature cells.

The researchers also found a way that non-CpG methylation is similar to CpG methylation in one important way: it's read by MeCP2, an enzyme long identified as a player in methylation.

That's significant because a mutation in MeCP2 causes Rett Syndrome, and understanding DNA methylation is key to understanding this syndrome. The disorder occurs, Song says, when working copies of the gene for MeCP2 are silenced during development.

Other authors on the paper include Junjie Guo, Yijing Su, Joo Heon Shin, Jaehoon Shin, Bin Xie, Chun Zhong, Shaohui Hu, Heng Zhu, Yuan Gao and Guo-li Ming, all of Johns Hopkins University;Hongda Li and Qiang Chang of the University of Wisconsin-Madison; and Thuc Le and Guoping Fan of University of California Los Angeles.

This research was supported by the National Institute of Neurological Disorders and Stroke(NS047344, NS048271 and NS072924), National Institute of Environmental Health Sciences (ES021957), the National Institute of Mental Health (MH087874), National Institute of Child Health and Human Development (HD06918, HD064743 and HD066560), the Simons Foundation Autism Research Initiative, NARSAD, the Maryland Stem Cell Research Fund (MSCRF) and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Nature Neuroscience article

Contact Information
Johns Hopkins Medicine
Media Relations and Public Affairs
Media Contacts: Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu

Vanessa McMains | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Aromatic couple makes new chemical bonds
30.06.2015 | Institute of Transformative Bio-Molecules (ITbM), Nagoya University

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>