Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn Geneticists Help Show Bitter Taste Perception Is Not Just About Flavors

Long the bane of picky eaters everywhere, broccoli’s taste is not just a matter of having a cultured palate; some people can easily taste a bitter compound in the vegetable that others have difficulty detecting.

Now a team of Penn researchers has helped uncover the evolutionary history of one of the genes responsible for this trait. Beyond showing the ancient origins of the gene, the researchers discovered something unexpected: something other than taste must have driven its evolution.

The team was led by Penn researchers Sarah Tishkoff, a Penn Integrates Knowledge professor with appointments in the genetics department in Penn’s Perelman School of Medicine and the biology department in the School of Arts and Sciences, and Michael C. Campbell, a postdoctoral fellow in the genetics department at the medical school, and included undergraduate and postdoctoral researchers from both the genetics and biology departments. The team included their collaborator Paul Breslin from the Monell Chemical Senses Center in Philadelphia and Rutgers University and researchers from the Musée de L’Homme in France, the National Institutes of Health and several African universities and research institutes.

Their research was published in the journal Molecular Biology and Evolution.

The researchers were interested in the gene TAS2R38, which codes for a bitter taste receptor protein with the same name. People with a certain version of that gene can taste a compound, phenylthiocarbamide, or PTC, which is chemically similar to naturally occurring bitter compounds, called glucosinolates, present in many foods, including cruciferous vegetables like broccoli and Brussels sprouts. These “tasters” find such foods to have a bitter taste that people with a different version can’t detect. As a result, “nontasters” have been shown to consume fewer cruciferous vegetables.

Modern humans originated in Africa, and populations from that region have the highest levels of genetic diversity globally. Previous studies had looked at variations in the PTC-sensitivity gene, but none had ever studied a large sample of diverse African populations with different cultures, ethnicities or diets.

“Because there is more genetic variation in African populations, you’re likely to see unique variants you may not see elsewhere,” Tishkoff said. “Our study of variation at the TAS2R38 gene in Africa and correlations with taste perception and diet gives us a clue about the evolutionary history of the gene and how natural selection might be influencing the pattern of variation.”

Genes that influence perception are of particular interest to geneticists because those genes are under strong evolutionary pressure; organisms with senses that are well adapted to their environment have better chances to survive and reproduce. PTC-sensitivity’s potential impact on nutrition, or the ability to detect bitter-tasting toxins, would therefore make it an obvious target for natural selection.

By looking at the TAS2R38 gene in 611 Africans from 57 diverse ethnic populations with distinct diets (for example, Pygmy hunter-gatherers and Maasai pastoralists), as well as in 132 non-Africans, the researchers showed that Africans had more variation than non-Africans, including several never-before-seen rare mutations.

The researchers also tested the correlation between genetic variation at this gene and levels of PTC tasting ability in 463 Africans, another first-of-its-kind study. In an experiment that was challenging to carry out across a wide swath of the African continent, participants sampled successively concentrated solutions of PTC and water until they were able to detect the bitter taste. When correlated with the participants’ genetic data, the study revealed that Africans have a broader range of PTC taste sensitivity than typically seen outside of Africa, and that relatively new rare mutations also decrease an individual’s ability to taste PTC.

Comparing different African populations confirmed that the PTC-sensitivity gene is millions of years old, meaning it predates the evolution of modern humans and likely existed in the common ancestor of modern humans and Neanderthals.

The study also revealed something surprising: local diet did not have an effect on the evolution of any of the PTC-sensitivity gene variants.

“Although we typically see a lot of genetic variation among diverse African populations, the frequency of TAS2R38 variants is fairly similar across different ethnicities, cultures and diets,” Campbell said. “This is suggestive that variation at this gene serves some other function beyond oral sensory perception.”

This counter-intuitive discovery is in line with other recent studies, which found receptors similar to TAS2R38 in the lungs, upper airways and gut. If the variations of the TAS2R38 gene have had a heretofore-undiscovered impact on breathing or digesting, alongside tasting, the former traits might be the true focus of natural selection.

“Why are we ‘tasting’ in our guts or in our lungs? There must be something else,” Tishkoff said, “that these taste receptors are doing, and it must be a pretty important physiological process, otherwise these variants wouldn’t be maintained.”

“We now believe the chemical senses play key sentinel roles at points of entry to the body like the mouth, airways and gastro-intestinal tract,” Breslin said. “It is possible that, in addition to detecting bitter-tasting thyroid toxins, products of this gene help to defend against ubiquitous pan-African threats, such as inhaling injurious compounds or growing undesirable bacteria in airway mucus or intestines.”

In addition to Tishkoff and Campbell, the research was conducted by postdoctoral fellows Alessia Ranciaro and Jibril B. Hirbo, both of the genetics department in Penn’s Perelman School of Medicine; undergraduate student Daniel Zinshteyn of the biology department in the School of Arts and Sciences; Breslin; Alain Froment of the Musée de L’Homme; Sabah Omar of Kenya Medical Research Institute; Jean-Marie Bodo of Cameroon’s Ministry of Scientific Research and Innovation; Thomas Nyambo and Godfrey Lema of Tanzania’s Muhimbili University of Health and Allied Sciences; and Dennis Drayna of the NIH’s National Institute on Deafness and Other Communication Disorders.

The research was supported by the National Science Foundation, the National Institutes of Health and a David and Lucile Packard Career Award.

Evan Lerner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>