Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peering into living cells -- without dye nor fluophore

08.02.2013
2 young EPFL scientists have developed a device that can create 3-D images of living cells and track their reaction to various stimuli without the use of contrast dyes or fluorophores

In the world of microscopy, this advance is almost comparable to the leap from photography to live television.


Thanks to this setup, a "cold" laser beam hits a sample at the center; a camera then analyses the phase (holographic technique) and a computer builds a 3-D image of the sample -- including its interior.

Credit: Yann Cotte - Fatih Toy - EPFL

Two young EPFL researchers, Yann Cotte and Fatih Toy, have designed a device that combines holographic microscopy and computational image processing to observe living biological tissues at the nanoscale. Their research is being done under the supervision of Christian Depeursinge, head of the Microvision and Microdiagnostics Group in EPFL's School of Engineering.

Using their setup, three-dimensional images of living cells can be obtained in just a few minutes – instantaneous operation is still in the works – at an incredibly precise resolution of less than 100 nanometers, 1000 times smaller than the diameter of a human hair. And because they're able to do this without using contrast dyes or fluorescents, the experimental results don't run the risk of being distorted by the presence of foreign substances.

Being able to capture a living cell from every angle like this lays the groundwork for a whole new field of investigation. "We can observe in real time the reaction of a cell that is subjected to any kind of stimulus," explains Cotte. "This opens up all kinds of new opportunities, such as studying the effects of pharmaceutical substances at the scale of the individual cell, for example."

Watching a neuron grow

This month in Nature Photonics the researchers demonstrate the potential of their method by developing, image by image, the film of a growing neuron and the birth of a synapse, caught over the course of an hour at a rate of one image per minute. This work, which was carried out in collaboration with the Neuroenergetics and cellular dynamics laboratory in EPFL's Brain Mind Institute, directed by Pierre Magistretti, earned them an editorial in the prestigious journal. "Because we used a low-intensity laser, the influence of the light or heat on the cell is minimal," continues Cotte. "Our technique thus allows us to observe a cell while still keeping it alive for a long period of time."

As the laser scans the sample, numerous images extracted by holography are captured by a digital camera, assembled by a computer and "deconvoluted" in order to eliminate noise. To develop their algorithm, the young scientists designed and built a "calibration" system in the school's clean rooms (CMI) using a thin layer of aluminum that they pierced with 70nm-diameter "nanoholes" spaced 70nm apart.

Finally, the assembled three-dimensional image of the cell, that looks as focused as a drawing in an encyclopedia, can be virtually "sliced" to expose its internal elements, such as the nucleus, genetic material and organelles.

Toy and Cotte, who have already obtained an EPFL Innogrant, have no intention of calling a halt to their research after such a promising beginning. In a company that's in the process of being created and in collaboration with the startup Lyncée SA, they hope to develop a system that could deliver these kinds of observations in vivo, without the need for removing tissue, using portable devices. In parallel, they will continue to design laboratory material based on these principles. Even before its official launch, the start-up they're creating has plenty of work to do - and plenty of ambition, as well.

Yann Cotte | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>