Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US Patent granted for Super Resolution Localization Microscopy of naturally occurring GFP

30.03.2012
No longer need for specifically designed switchable fluorescent dyes - The SPDMphymod technology of Prof. Christoph Cremer, University of Heidelberg & IMB Mainz, Germany, allows the use of standard, not genetically modified fluorescent proteins and of non-protein conventional fluorescent dyes in 2D & 3D super resolution microscopy.
"The granted US patent for the use of conventional fluorescent dyes is a strong unique selling point for our super resolution microscopy and a substantial market advantage in comparison with related methods which work with specially constructed photo-switchable or photo-activatable fluorescent dyes, or with typically toxic, special chemical environments", according to Dr. Andrea Nestl, innovation manager of the Technology Licensing Office (TLB), and responsible for the patent strategy, marketing and commercialization of this portfolio. ”This is a remarkable increase in value for our patent portfolio, combining 2D & 3D localization microscopy and structured illumination and additionally molecular biology application patents."

Fundamental to SPDMphymod (physically modifiable fluorophores) are blinking phenomena. The fluorescent molecules emit the same spectral light frequency, but with different spectral signatures based on the flashing characteristics. Conventional, well established and inexpensive fluorescent dyes like naturally occurring GFP and its derivatives like RFP, YFP, as well as Alexa, Atto and Cy2, Cy3 dyes can thus be used without any additional modification, in connection with standard embedding media or even physiological living cell conditions. Two or three conventional dyes can be detected in the co-localization mode, either as fluorescent fusion proteins or fluorescent labeled antibodies or combinations thereof.

Knowing that this will revolutionize super resolution light microscopy, because there is a multitude of material for investigation readily available for use without any additional preparation techniques, simply in the way as it is normally done by employing a standard confocal fluorescence or epifluorescence microscope, the inventors filed the SPDMphymod patent application on March 19th 2008, and subsequently published the scientific results in May 2008 by Reymann et al., and in September 2008 by Lemmer et al.

Since then, the Cremer lab has steadily increased the scope of applications of SPDMphymod, from the cell nucleus to nuclear membranes, cytoplasmic structures,clinically important cell membrane receptors, and to the analysis of cell junction complexes (Cremer et al. 2011 Biotechnology J. 6; Kaufmann et al. PLoSOne 2012).
By using visible laser light, this means that not only large cell areas can be studied two-dimensionally, but also cell complexes with a spatial resolution of every detail down to the range of few nanometer in 2D and up to a density of 2,8 • 10000/μm² within an area of up to 5000 µm² or few tens of nm in the 3D mode. http://www.slideshare.net/Nestl/super-resolution-microscopy-christoph-cremer

The availability of naturally occurring GFP (green fluorescent protein from jellyfish) and its derivatives has thoroughly redefined fluorescence microscopy and the way it is used in cell biology and other biological disciplines – the use in super resolution microscopy will start a new investigational era. Martin Chalfie, Osamu Shimomura, and Roger Y. Tsien were awarded the 2008 Nobel Prize in Chemistry for their discovery and development of the green fluorescent protein.

The issue of this US patent for SPDMphymod is based on the SPDM (Spectral Precision Distance Microscopy) patent family, the first described farfield based localization microscopy technology (since the mid 1990s) that achieves an effective optical resolution several and even many times better than the conventional optical resolution, represented by the half-width of the main maximum of the effective point spread function.

GFP / RFP Dual color localization microscopy SPDMphymod / super resolution microscopy in a nucleus of a bone cancer cell: counting of 70,000 RFP-H2A-histone molecules & 50,000 GPF-Snf2H chromatin remodeling proteins (field of view of 470 µm², optical depth of 600 nm, each ‚spot‘ represents a single molecule, total 120000)
Foto: Prof. Christoph Cremer

The methodological simplicity of SPDMphymod technology is based on the fact that a single laser wavelength of suitable intensity is sufficient for nanoimaging the distribution of a given type of molecules, in contrast to other localization microscopy technologies which typically need two laser wavelengths in combination with especially designed photo-switchable/photo-activatable molecules and/or special chemical environments.

It is crucial for SPDMphymod that a single molecule is first transferred into a very long-living reversible dark state (with half-life of several seconds to minutes, i.e. orders of magnitude longer than typical ground state – triplet transitions), from which it returns to a fluorescent state, emitting many thousands of photons within several tens of milliseconds before returning into a very long-living so-called irreversible dark state.

"It is a substantial market advantage that there are manifold applications”, according to Dr. Andrea Nestl, responsible for the development of patenting, marketing and commercialisation strategy on behalf of the University of Heidelberg. The patent portfolio combining 2D & 3D localization microscopy, structured illumination, and additionally molecular biology applications will play an important role in the future in pharmaceutical, cell-biological, medical and biophysical research, i.e. wherever molecular ‘nano’imaging will be required on a cellular scale. For instance, hidden proteins or nucleic acids of a pharmacologically active 3D-molecule complex can be made visible without destroying the complex itself. http://idw-online.de/pages/de/news457531

Christoph Cremer is Professor at the Kirchhoff Institute of Physics and the Institute of Pharmacy and Molecular Biotechnology (IPMB), both Institutes at the University of Heidelberg. Since 2011 he is also group leader in the field of Super Resolution Microscopy at the Institute of Molecular Biology gGmbH (IMB) in Mainz, Germany. In addition, he is a scientific member of the US-American Jackson Laboratory in Bar Harbor / Maine. Cremer is the appointed representative of the University of Heidelberg at the German Association of University Professors and Lecturers (Deutscher Hochschulverband DHV) and for many years he has been member of the The Senate, the most important decision-making body of the University of Heidelberg; from 2006 to 2009 he has been its Second Speaker.

References
P. Lemmer, M.Gunkel, D.Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J.Reymann, P. Müller, M. Hausmann, C. Cremer (2008) SPDM – Light Microscopy with Single Molecule Resolution at the Nanoscale. Applied Physics B 93: 1-12.
J. Reymann, D. Baddeley, P. Lemmer, W. Stadter, T. Jegou, K. Rippe, C. Cremer, U. Birk (2008) High precision structural analysis of subnuclear complexes in fixed and live cells via Spatially Modulated Illumination (SMI) microscopy. Chromosome Research 16: 367 –382.
Manuel Gunkel, Fabian Erdel, Karsten Rippe, Paul Lemmer, Rainer Kaufmann, Christoph Hörmann, Roman Amberger and Christoph Cremer (2009): Dual color localization microscopy of cellular nanostructures. In: Biotechnology Journal 4, 927-938.

Kaufmann R, Piontek J, Grüll F, Kirchgessner M, Rossa J, Wolburg H, Blasig IE and Cremer C (2012). Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS One, 7, e31128.

Dr. Regina Kratt | idw
Further information:
http://www.tlb.de
http://www.slideshare.net/Nestl/super-resolution-microscopy-christoph-cremer

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>