Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites ready to jump

04.08.2009
How the cell represses mobile genetic elements

Transposons are mobile genetic elements found in the hereditary material of humans and other organisms. They can replicate and the new copies can insert at novel sites in the genome. Because this threatens the whole organism, molecular mechanisms have evolved which can repress transposon activity.

Professor Klaus Förstemann of the Gene Center of Ludwig-Maximilians-Universität (LMU) in Munich and a team of researchers working with the fruitfly Drosophila melanogaster have now uncovered a new type of cellular defence that acts against DNA sequences present in high copy numbers inside the cell, even if they have not integrated into the genome.

Small molecules of RNA (a class of nucleic acid closely related to the genetic material DNA) play the central role. "Transposons are genomic parasites, so to speak", says Förstemann. "If they are allowed to proliferate, the genome can become unstable or cancers can develop. We now want to find out whether mammalian cells possess this newly discovered defence mechanism and to elucidate precisely how it works." (EMBO Journal online, 30 July 2009.)

Transposons constitute a significant fraction of the genomes of most higher organisms. Indeed, it is estimated that these mobile elements, which include one or more genes, make up as much as half of the genetic material. "This demonstrates", says Förstemann, "that it is not always possible to tame these "selfish" genetic elements, although highly efficient mechanisms of defence have evolved. For instance, in the germ cells, which are required for reproduction, the system of so-called piRNAs ensures that transposon activity is inhibited – but only if these RNAs are transmitted from the mother. Disruption of this system usually leads to a drastic reduction in the fertility of the progeny.

Germ cells are an ideal target for transposons, since these cells pass their genetic material – together with integrated mobile elements – on to all cells of the progeny. But normal body (somatic) cells can also be attacked by transposons. For example, certain viruses carry transposons in their genomes and introduce them into the host cells they infect. Therefore, transposon activity must also be repressed in somatic cells. Recently so-called endo-siRNAs that perform this function were discovered in the fruitfly. A similar class of molecules has been found in mice.

By means of a process called RNA interference, the siRNAs enable the cell to recognize and destroy messenger RNAs derived from transposons. The researchers in Förstemann's group were able to identify a protein that is essential for the production of endo-siRNAs. It turns out that this is a previously unknown variant of the protein "Loquacious". In Drosophila, Loquacious can bind to specific RNA molecules that serve as precursors of the endo-siRNAs. Furthermore, the team pinpointed an entirely novel feature of this system: Repression of transposon activity was also detectable when multiple copies of a mobile element were present in the cell but not yet incorporated into the genome.

The phenomenon of RNA interference first came to light only a short time ago, but has already become a well established field of study. Thanks to more recent findings, the known repertoire of small RNAs has grown. As Förstemann stresses, "It is therefore particularly important to discriminate between the various molecular classes in terms of their modes of synthesis and specific functions". This is no easy task, since all these molecules are similar in size and virtually indistinguishable chemically. "We will now test whether the mechanism we have found in Drosophila also exists in mammalian cells. We would also like to know how the mechanism is targeted specifically against sequences present in high copy numbers".

The project was carried out under the auspices of the excellence cluster "Center for Integrated Protein Science Munich" (CIPSM).

Publication:
"Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences"
Julia Verena Hartig, Stephanie Esslinger, Romy Böttcher, Kuniaki Saito and Klaus Förstemann

EMBO Journal online, 30 July 2009

Contact:
Professor Klaus Förstemann
Gene Center of LMU Munich
Phone: +49 (0) 89 / 2180 - 76912
E-Mail: foerstemann@lmb.uni-muenchen.de

Prof Klaus Förstemann | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>