Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites ready to jump

04.08.2009
How the cell represses mobile genetic elements

Transposons are mobile genetic elements found in the hereditary material of humans and other organisms. They can replicate and the new copies can insert at novel sites in the genome. Because this threatens the whole organism, molecular mechanisms have evolved which can repress transposon activity.

Professor Klaus Förstemann of the Gene Center of Ludwig-Maximilians-Universität (LMU) in Munich and a team of researchers working with the fruitfly Drosophila melanogaster have now uncovered a new type of cellular defence that acts against DNA sequences present in high copy numbers inside the cell, even if they have not integrated into the genome.

Small molecules of RNA (a class of nucleic acid closely related to the genetic material DNA) play the central role. "Transposons are genomic parasites, so to speak", says Förstemann. "If they are allowed to proliferate, the genome can become unstable or cancers can develop. We now want to find out whether mammalian cells possess this newly discovered defence mechanism and to elucidate precisely how it works." (EMBO Journal online, 30 July 2009.)

Transposons constitute a significant fraction of the genomes of most higher organisms. Indeed, it is estimated that these mobile elements, which include one or more genes, make up as much as half of the genetic material. "This demonstrates", says Förstemann, "that it is not always possible to tame these "selfish" genetic elements, although highly efficient mechanisms of defence have evolved. For instance, in the germ cells, which are required for reproduction, the system of so-called piRNAs ensures that transposon activity is inhibited – but only if these RNAs are transmitted from the mother. Disruption of this system usually leads to a drastic reduction in the fertility of the progeny.

Germ cells are an ideal target for transposons, since these cells pass their genetic material – together with integrated mobile elements – on to all cells of the progeny. But normal body (somatic) cells can also be attacked by transposons. For example, certain viruses carry transposons in their genomes and introduce them into the host cells they infect. Therefore, transposon activity must also be repressed in somatic cells. Recently so-called endo-siRNAs that perform this function were discovered in the fruitfly. A similar class of molecules has been found in mice.

By means of a process called RNA interference, the siRNAs enable the cell to recognize and destroy messenger RNAs derived from transposons. The researchers in Förstemann's group were able to identify a protein that is essential for the production of endo-siRNAs. It turns out that this is a previously unknown variant of the protein "Loquacious". In Drosophila, Loquacious can bind to specific RNA molecules that serve as precursors of the endo-siRNAs. Furthermore, the team pinpointed an entirely novel feature of this system: Repression of transposon activity was also detectable when multiple copies of a mobile element were present in the cell but not yet incorporated into the genome.

The phenomenon of RNA interference first came to light only a short time ago, but has already become a well established field of study. Thanks to more recent findings, the known repertoire of small RNAs has grown. As Förstemann stresses, "It is therefore particularly important to discriminate between the various molecular classes in terms of their modes of synthesis and specific functions". This is no easy task, since all these molecules are similar in size and virtually indistinguishable chemically. "We will now test whether the mechanism we have found in Drosophila also exists in mammalian cells. We would also like to know how the mechanism is targeted specifically against sequences present in high copy numbers".

The project was carried out under the auspices of the excellence cluster "Center for Integrated Protein Science Munich" (CIPSM).

Publication:
"Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences"
Julia Verena Hartig, Stephanie Esslinger, Romy Böttcher, Kuniaki Saito and Klaus Förstemann

EMBO Journal online, 30 July 2009

Contact:
Professor Klaus Förstemann
Gene Center of LMU Munich
Phone: +49 (0) 89 / 2180 - 76912
E-Mail: foerstemann@lmb.uni-muenchen.de

Prof Klaus Förstemann | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>