Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites ready to jump

04.08.2009
How the cell represses mobile genetic elements

Transposons are mobile genetic elements found in the hereditary material of humans and other organisms. They can replicate and the new copies can insert at novel sites in the genome. Because this threatens the whole organism, molecular mechanisms have evolved which can repress transposon activity.

Professor Klaus Förstemann of the Gene Center of Ludwig-Maximilians-Universität (LMU) in Munich and a team of researchers working with the fruitfly Drosophila melanogaster have now uncovered a new type of cellular defence that acts against DNA sequences present in high copy numbers inside the cell, even if they have not integrated into the genome.

Small molecules of RNA (a class of nucleic acid closely related to the genetic material DNA) play the central role. "Transposons are genomic parasites, so to speak", says Förstemann. "If they are allowed to proliferate, the genome can become unstable or cancers can develop. We now want to find out whether mammalian cells possess this newly discovered defence mechanism and to elucidate precisely how it works." (EMBO Journal online, 30 July 2009.)

Transposons constitute a significant fraction of the genomes of most higher organisms. Indeed, it is estimated that these mobile elements, which include one or more genes, make up as much as half of the genetic material. "This demonstrates", says Förstemann, "that it is not always possible to tame these "selfish" genetic elements, although highly efficient mechanisms of defence have evolved. For instance, in the germ cells, which are required for reproduction, the system of so-called piRNAs ensures that transposon activity is inhibited – but only if these RNAs are transmitted from the mother. Disruption of this system usually leads to a drastic reduction in the fertility of the progeny.

Germ cells are an ideal target for transposons, since these cells pass their genetic material – together with integrated mobile elements – on to all cells of the progeny. But normal body (somatic) cells can also be attacked by transposons. For example, certain viruses carry transposons in their genomes and introduce them into the host cells they infect. Therefore, transposon activity must also be repressed in somatic cells. Recently so-called endo-siRNAs that perform this function were discovered in the fruitfly. A similar class of molecules has been found in mice.

By means of a process called RNA interference, the siRNAs enable the cell to recognize and destroy messenger RNAs derived from transposons. The researchers in Förstemann's group were able to identify a protein that is essential for the production of endo-siRNAs. It turns out that this is a previously unknown variant of the protein "Loquacious". In Drosophila, Loquacious can bind to specific RNA molecules that serve as precursors of the endo-siRNAs. Furthermore, the team pinpointed an entirely novel feature of this system: Repression of transposon activity was also detectable when multiple copies of a mobile element were present in the cell but not yet incorporated into the genome.

The phenomenon of RNA interference first came to light only a short time ago, but has already become a well established field of study. Thanks to more recent findings, the known repertoire of small RNAs has grown. As Förstemann stresses, "It is therefore particularly important to discriminate between the various molecular classes in terms of their modes of synthesis and specific functions". This is no easy task, since all these molecules are similar in size and virtually indistinguishable chemically. "We will now test whether the mechanism we have found in Drosophila also exists in mammalian cells. We would also like to know how the mechanism is targeted specifically against sequences present in high copy numbers".

The project was carried out under the auspices of the excellence cluster "Center for Integrated Protein Science Munich" (CIPSM).

Publication:
"Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences"
Julia Verena Hartig, Stephanie Esslinger, Romy Böttcher, Kuniaki Saito and Klaus Förstemann

EMBO Journal online, 30 July 2009

Contact:
Professor Klaus Förstemann
Gene Center of LMU Munich
Phone: +49 (0) 89 / 2180 - 76912
E-Mail: foerstemann@lmb.uni-muenchen.de

Prof Klaus Förstemann | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>