Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites persuade immune cells to invite them in for dinner

24.08.2009
The parasites that cause leishmaniasis use a quirky trick to convince the immune system to effectively invite them into cells for dinner, according to a new study published today in PLoS Pathogens.

The researchers, from Imperial College London, say their findings improve understanding of the way Leishmania parasites establish an infection and could aid the search for a vaccine against this neglected tropical disease.

Leishmania parasites are transmitted by sand flies. After the parasites infect a sand fly, they make a sticky gel so that when the fly bites a human, it regurgitates this gel into the body. Today's research, which was funded by the Wellcome Trust, shows that the gel persuades immune cells known as macrophages to feed the parasites, rather than killing them.

Leishmaniasis is an infection caused by Leishmania parasites that affects around 12 million people per year, mainly in tropical and sub-tropical countries. Symptoms include disfiguring and painful skin ulcers and in severe cases the infection can also spread to the internal organs. Patients with the infection often suffer from social exclusion because of their disfigurement. There is currently no vaccine to protect against infection and although treatments are available, they are not always effective and access to drugs is limited in many areas.

Leishmania-infected sand flies carry the parasites in their midgut. The parasites produce a gel that turns into a plug, stopping anything from passing in or out of the fly's gut. The fly must regurgitate the gel plug before it can feed on human blood. When the fly bites a person, its barbed mouth parts tear the skin so when it regurgitates parasites along with the gel plug, the skin becomes infected.

Today's study shows that the gel's work doesn't stop there - it also helps the parasites to establish an infection by enticing macrophages to the bite site. Macrophages usually kill invading pathogens by eating and digesting them. However, according to the new research, the gel persuades macrophages to engulf the parasites and feed them rather than digest them. This happens within the first few days following infection, enabling the parasites to establish themselves and infect the skin.

Previous research suggested that the sand fly's saliva could be involved in manipulating the immune system. Today's study suggests that the gel has an even bigger effect than the saliva on establishing infection.

Dr Matthew Rogers, lead author of the study from the Division of Investigative Science at Imperial College London, said: "Leishmaniasis is a very debilitating disease, yet we know comparatively little about the way the parasites are transmitted by sand flies. This is because when scientists study the disease they usually inject the parasite into tissues without including the gel or the sand fly's saliva. Our new research shows that we must consider the way the parasites enter the body - along with the gel and saliva - if we are to recreate infection and get an accurate picture of what is going on.

"Our new research shows that Leishmania parasites are very cunning - they make their own gel to control the human immune system so they can establish a skin infection. There is more work to be done here - our previous work in mice has suggested that injecting a synthetic version of the gel into people might provide them with some protection against infection and we would like to explore this further," added Dr Rogers.

The researchers looked at Leishmania infection in mice and found that the gel, called promastigote secretory gel (PSG) enticed macrophages to the site of entry. They compared the effect of PSG with the effects of saline and sand fly saliva on the number of macrophages recruited to a bite site, 4-72 hours after the bite. In the experiment, PSG recruited 108 times more macrophages to the bite than saline and five times more than sand fly saliva.

The researchers also found that PSG persuaded macrophages to feed, rather than kill, the parasites. When macrophages want to kill a pathogen, they produce nitric oxide. However, the researchers' experiments showed that PSG influences the immune cells to produce food, in the form of polyamines, for the parasites instead.

Finally, the researchers looked at the effect of PSG on parasite survival in vitro. They infected macrophage cells with Leishmania parasites with and without PSG. They found that more parasites survived in the first 48 hours following infection when PSG was added; both the proportion of infected cells and the number of parasites in the cells increased by up to 8-fold with PSG. The parasite infection declined after 48 hours in cells both with and without PSG, suggesting an early window of time in which PSG helps the parasites establish an infection.

This research was a collaboration between Imperial College London, Liverpool School of Tropical Medicine and the London School of Hygiene and Tropical Medicine, led by Imperial.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>