Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites persuade immune cells to invite them in for dinner

24.08.2009
The parasites that cause leishmaniasis use a quirky trick to convince the immune system to effectively invite them into cells for dinner, according to a new study published today in PLoS Pathogens.

The researchers, from Imperial College London, say their findings improve understanding of the way Leishmania parasites establish an infection and could aid the search for a vaccine against this neglected tropical disease.

Leishmania parasites are transmitted by sand flies. After the parasites infect a sand fly, they make a sticky gel so that when the fly bites a human, it regurgitates this gel into the body. Today's research, which was funded by the Wellcome Trust, shows that the gel persuades immune cells known as macrophages to feed the parasites, rather than killing them.

Leishmaniasis is an infection caused by Leishmania parasites that affects around 12 million people per year, mainly in tropical and sub-tropical countries. Symptoms include disfiguring and painful skin ulcers and in severe cases the infection can also spread to the internal organs. Patients with the infection often suffer from social exclusion because of their disfigurement. There is currently no vaccine to protect against infection and although treatments are available, they are not always effective and access to drugs is limited in many areas.

Leishmania-infected sand flies carry the parasites in their midgut. The parasites produce a gel that turns into a plug, stopping anything from passing in or out of the fly's gut. The fly must regurgitate the gel plug before it can feed on human blood. When the fly bites a person, its barbed mouth parts tear the skin so when it regurgitates parasites along with the gel plug, the skin becomes infected.

Today's study shows that the gel's work doesn't stop there - it also helps the parasites to establish an infection by enticing macrophages to the bite site. Macrophages usually kill invading pathogens by eating and digesting them. However, according to the new research, the gel persuades macrophages to engulf the parasites and feed them rather than digest them. This happens within the first few days following infection, enabling the parasites to establish themselves and infect the skin.

Previous research suggested that the sand fly's saliva could be involved in manipulating the immune system. Today's study suggests that the gel has an even bigger effect than the saliva on establishing infection.

Dr Matthew Rogers, lead author of the study from the Division of Investigative Science at Imperial College London, said: "Leishmaniasis is a very debilitating disease, yet we know comparatively little about the way the parasites are transmitted by sand flies. This is because when scientists study the disease they usually inject the parasite into tissues without including the gel or the sand fly's saliva. Our new research shows that we must consider the way the parasites enter the body - along with the gel and saliva - if we are to recreate infection and get an accurate picture of what is going on.

"Our new research shows that Leishmania parasites are very cunning - they make their own gel to control the human immune system so they can establish a skin infection. There is more work to be done here - our previous work in mice has suggested that injecting a synthetic version of the gel into people might provide them with some protection against infection and we would like to explore this further," added Dr Rogers.

The researchers looked at Leishmania infection in mice and found that the gel, called promastigote secretory gel (PSG) enticed macrophages to the site of entry. They compared the effect of PSG with the effects of saline and sand fly saliva on the number of macrophages recruited to a bite site, 4-72 hours after the bite. In the experiment, PSG recruited 108 times more macrophages to the bite than saline and five times more than sand fly saliva.

The researchers also found that PSG persuaded macrophages to feed, rather than kill, the parasites. When macrophages want to kill a pathogen, they produce nitric oxide. However, the researchers' experiments showed that PSG influences the immune cells to produce food, in the form of polyamines, for the parasites instead.

Finally, the researchers looked at the effect of PSG on parasite survival in vitro. They infected macrophage cells with Leishmania parasites with and without PSG. They found that more parasites survived in the first 48 hours following infection when PSG was added; both the proportion of infected cells and the number of parasites in the cells increased by up to 8-fold with PSG. The parasite infection declined after 48 hours in cells both with and without PSG, suggesting an early window of time in which PSG helps the parasites establish an infection.

This research was a collaboration between Imperial College London, Liverpool School of Tropical Medicine and the London School of Hygiene and Tropical Medicine, led by Imperial.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>