Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite breaks its own DNA to avoid detection

16.04.2009
Double-stranded DNA breaks are the key to Trypanosoma brucei's getaway plan

The parasite Trypanosoma brucei, which causes African sleeping sickness, is like a thief donning a disguise. Every time the host's immune cells get close to destroying the parasite, it escapes detection by rearranging its DNA and changing its appearance.

Now, in research to appear in the advance online April 15 issue of Nature, two laboratories at Rockefeller University have joined forces to reveal how the parasite initiates its getaway, by cleaving both strands of its DNA.

The parasite's survival strategy hinges upon its ability to change its surface coat. The genes that encode the current coat, which is comprised entirely of molecules called variant surface glycoproteins (VSG), are located in 15 to 20 regions near the ends of chromosomes. When the host's immune system has just about killed all of the parasites, some surviving parasites rearrange their DNA and switch their coat, initiating another wave of infection. During this cat-and-mouse game, the immune system never gains the upper hand and the victim dies.

In 2007, George A.M. Cross, head of the Laboratory of Molecular Parasitology, and Oliver Dreesen, a former postdoc in the lab, published a model suggesting that the length of telomeres, which cap the ends of chromosomes, regulate the frequency with which the parasite changes its surface coat. When the telomeres become critically short, they predicted, a break occurs in or adjacent to the actively transcribed VSG gene and triggers a switch.

"Based on the observations we made in 2007, we predicted that doubled-stranded DNA breaks were behind the switch, but we were not able to prove it," says Dreesen, who is now at the Institute of Medical Biology in Singapore. But that all changed when Nina Papavasiliou, head of the Laboratory of Lymphocyte Biology, and Catharine Boothroyd, a postdoc in Nina's lab, began collaborating with Dreesen and Cross, who is André and Bella Meyer Professor at Rockefeller.

"Nina and Catharine had the perfect system to address whether this model was correct or not," says Dreesen. "They had developed a greatly improved assay to measure switching frequency, which is incredibly important, but what was key was that they were able to artificially put breaks upstream of the active VSG gene and see whether or not the surface coat changed."

By working with a DNA-cleaving enzyme from yeast, the team found that a DNA break in a specific region upstream of the active VSG gene causes the parasite to increase its coat-switching frequency by 250 times. During this break-induced recombination, a VSG gene from another chromosome is duplicated and then displaces the previously active VSG gene.

"That was an exciting find," says Boothroyd, "because duplicative gene conversion is the way trypanosomes in the wild also switch their surface coats." As Boothroyd points out, it is also how antibody-producing cells called B lymphocytes chop up and rearrange their DNA in order to destroy the virtually limitless number of foreign invaders that can infect us.

In order for duplicative gene conversion to occur, the team found that the double-stranded breaks occur naturally and specifically in a region upstream of the active VSG gene. It had long been speculated that this conserved repetitive region was important for VSG switching to occur but it had never been experimentally tested. "So detecting these breaks was a critical finding," says Cross. "Something that had not been possible prior to the application of these new techniques."

When the team looked at their first set of data, it not only fit exactly into Dreesen and Cross's prediction but it also suggested a common mechanism by which parasites and humans rearrange their DNA. "It was unbelievable," Dreesen says. "One experiment after another and it just worked."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>