Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen in Place of Chlorine

02.10.2009
Towards a more environmentally friendly propylene oxide synthesis: gold clusters catalyze the epoxidation of propylene by oxygen

Propylene oxide is an important bulk chemical that is used primarily in the production of polyurethane plastics.

Currently, propylene oxide is usually made from propylene (propene) in a process that uses chlorine as an oxidizing agent. This results in undesired byproducts as well as toxic chlorinated organic compounds. Existing alternative routes are mostly complicated and uneconomical.

The development of an environmentally friendly propylene oxide synthesis with oxygen as the oxidizing agent is high on the wish list. Japanese researchers have now developed a new catalyst that brings this goal closer. As the scientists working with Masatake Haruta report in the journal Angewandte Chemie, the catalyst is based on gold clusters and a special titanium-containing support.

In the oxidation of propylene (propene, CH3–CH=CH2) to propylene oxide (propene oxide), an oxygen atom is formally inserted into the double bond. This forms a ring containing two carbon atoms and one oxygen atom. Using oxygen as the oxidizing agent had not been considered before because the oxygen molecule (O2) can only be split into individual oxygen atoms with the input of a large amount of energy. Furthermore, propylene preferentially reacts with atomic oxygen to form acrolein and not the desired propylene oxide. A suitable catalyst is eagerly sought, and has come to be viewed as the “holy grail” of catalyst research. There have been a number of catalytic developments that have been not quite satisfactory.

Building upon prior work, Haruta and his team have been able to achieve a further step. Their new catalyst consists of gold clusters, which are less than 2 nm in size, deposited on a special titanium-containing silicalite support. “It is important that the gold used is not in the form of nanoparticles, but is in clusters,” emphasizes Haruta. Although these two terms are often used interchangeably in the literature, there are important differences. Gold clusters are explicitly defined, structurally uniform nanoscopic structures, whereas gold nanoparticles are particles with size in the nanometer range that have neither uniform size nor structure. “Our gold clusters are able to convert oxygen and water into hydroperoxide species, which are transferred onto neighboring titanium centers,” explains Haruta. “The resulting titanium hydroperoxide species (Ti–OOH) are the actual reaction partners for the propylene, which is converted to propylene oxide.”

“The yields and selectivities we have achieved so far are inadequate for an industrial process,” says Haruta, “however, our catalyst is another important milestone on the way to an environmentally friendly synthesis for propylene oxide.”

Author: Masatake Haruta, Tokyo Metropolitan University (Japan), mailto:haruta-masatake@center.tmu.ac.jp

Title: Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters

Angewandte Chemie International Edition 2009, 48, No. 42, 7862–7866, doi: 10.1002/anie.200903011

Masatake Haruta | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>