Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen in Place of Chlorine

02.10.2009
Towards a more environmentally friendly propylene oxide synthesis: gold clusters catalyze the epoxidation of propylene by oxygen

Propylene oxide is an important bulk chemical that is used primarily in the production of polyurethane plastics.

Currently, propylene oxide is usually made from propylene (propene) in a process that uses chlorine as an oxidizing agent. This results in undesired byproducts as well as toxic chlorinated organic compounds. Existing alternative routes are mostly complicated and uneconomical.

The development of an environmentally friendly propylene oxide synthesis with oxygen as the oxidizing agent is high on the wish list. Japanese researchers have now developed a new catalyst that brings this goal closer. As the scientists working with Masatake Haruta report in the journal Angewandte Chemie, the catalyst is based on gold clusters and a special titanium-containing support.

In the oxidation of propylene (propene, CH3–CH=CH2) to propylene oxide (propene oxide), an oxygen atom is formally inserted into the double bond. This forms a ring containing two carbon atoms and one oxygen atom. Using oxygen as the oxidizing agent had not been considered before because the oxygen molecule (O2) can only be split into individual oxygen atoms with the input of a large amount of energy. Furthermore, propylene preferentially reacts with atomic oxygen to form acrolein and not the desired propylene oxide. A suitable catalyst is eagerly sought, and has come to be viewed as the “holy grail” of catalyst research. There have been a number of catalytic developments that have been not quite satisfactory.

Building upon prior work, Haruta and his team have been able to achieve a further step. Their new catalyst consists of gold clusters, which are less than 2 nm in size, deposited on a special titanium-containing silicalite support. “It is important that the gold used is not in the form of nanoparticles, but is in clusters,” emphasizes Haruta. Although these two terms are often used interchangeably in the literature, there are important differences. Gold clusters are explicitly defined, structurally uniform nanoscopic structures, whereas gold nanoparticles are particles with size in the nanometer range that have neither uniform size nor structure. “Our gold clusters are able to convert oxygen and water into hydroperoxide species, which are transferred onto neighboring titanium centers,” explains Haruta. “The resulting titanium hydroperoxide species (Ti–OOH) are the actual reaction partners for the propylene, which is converted to propylene oxide.”

“The yields and selectivities we have achieved so far are inadequate for an industrial process,” says Haruta, “however, our catalyst is another important milestone on the way to an environmentally friendly synthesis for propylene oxide.”

Author: Masatake Haruta, Tokyo Metropolitan University (Japan), mailto:haruta-masatake@center.tmu.ac.jp

Title: Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters

Angewandte Chemie International Edition 2009, 48, No. 42, 7862–7866, doi: 10.1002/anie.200903011

Masatake Haruta | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>