Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we outlive our ape ancestors

04.12.2009
Human genes have adapted to inflammation, but we are more susceptible to diseases of aging

In spite of their genetic similarity to humans, chimpanzees and great apes have maximum lifespans that rarely exceed 50 years. The difference, explains USC Davis School of Gerontology Professor Caleb Finch, is that as humans evolved genes that enabled them to better adjust to levels of infection and inflammation and to the high cholesterol levels of their meat rich diets.

In the December issue of PNAS Early Edition, Finch reveals that these evolutionary genetic advantages, caused by slight differences in DNA sequencing and improvements in diet, make humans uniquely susceptible to diseases of aging such as cancer, heart disease and dementia when compared to other primates.

Finch, the ARCO & William F. Kieschnick Professor in the Neurobiology of Aging and a distinguished University Professor, argues that a major contributor to longevity for humans is the genes that adapt to higher exposure to inflammation.

"Over time, ingestion of red meat, particularly raw meat infected with parasites in the era before cooking, stimulates chronic inflammation that leads to some of the common diseases of aging," Finch said.

In addition to differences in diets between species of primates, humans evolved unique variants in a cholesterol transporting gene, apolipoprotein E, which also regulates inflammation and many aspects of aging in the brain and arteries.

ApoE3 is unique to humans and may be what Finch calls "a meat-adaptive gene" that has increased the human lifespan.

However, the minor allele, apoE4, when expressed in humans, can impair neuronal development, as well as shorten human lifespan by about four years and increase the risk of heart disease and Alzheimer disease by several-fold. ApoE4 carriers have higher totals of blood cholesterol, more oxidized blood lipids and early onset of coronary heart disease and Alzheimer's disease.

"The chimpanzee apoE functions more like the "good" apoE3, which contributes to low levels of heart disease and Alzheimer's," Finch said. Correspondingly, chimpanzees in captivity have unusually low levels of heart disease and Alzheimer-like changes during aging.

Finch hypothesizes that the expression of ApoE4 could be the result of the antagonistic pleiotropy theory of aging, in which genes selected to fight diseases in early life have adverse affects in later life.

"ApoeE may be a prototype for other genes that enabled the huge changes in human lifespan, as well as brain size, despite our very unape-like meat-rich diets," Finch said. "Drugs being developed to alter activities of apoE4 may also enhance lifespan of apoE4 carriers."

Support was provided by the National Institute on Aging and the Ellison Medical Foundation.

Athan Bezaitis | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>