Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why we outlive our ape ancestors

Human genes have adapted to inflammation, but we are more susceptible to diseases of aging

In spite of their genetic similarity to humans, chimpanzees and great apes have maximum lifespans that rarely exceed 50 years. The difference, explains USC Davis School of Gerontology Professor Caleb Finch, is that as humans evolved genes that enabled them to better adjust to levels of infection and inflammation and to the high cholesterol levels of their meat rich diets.

In the December issue of PNAS Early Edition, Finch reveals that these evolutionary genetic advantages, caused by slight differences in DNA sequencing and improvements in diet, make humans uniquely susceptible to diseases of aging such as cancer, heart disease and dementia when compared to other primates.

Finch, the ARCO & William F. Kieschnick Professor in the Neurobiology of Aging and a distinguished University Professor, argues that a major contributor to longevity for humans is the genes that adapt to higher exposure to inflammation.

"Over time, ingestion of red meat, particularly raw meat infected with parasites in the era before cooking, stimulates chronic inflammation that leads to some of the common diseases of aging," Finch said.

In addition to differences in diets between species of primates, humans evolved unique variants in a cholesterol transporting gene, apolipoprotein E, which also regulates inflammation and many aspects of aging in the brain and arteries.

ApoE3 is unique to humans and may be what Finch calls "a meat-adaptive gene" that has increased the human lifespan.

However, the minor allele, apoE4, when expressed in humans, can impair neuronal development, as well as shorten human lifespan by about four years and increase the risk of heart disease and Alzheimer disease by several-fold. ApoE4 carriers have higher totals of blood cholesterol, more oxidized blood lipids and early onset of coronary heart disease and Alzheimer's disease.

"The chimpanzee apoE functions more like the "good" apoE3, which contributes to low levels of heart disease and Alzheimer's," Finch said. Correspondingly, chimpanzees in captivity have unusually low levels of heart disease and Alzheimer-like changes during aging.

Finch hypothesizes that the expression of ApoE4 could be the result of the antagonistic pleiotropy theory of aging, in which genes selected to fight diseases in early life have adverse affects in later life.

"ApoeE may be a prototype for other genes that enabled the huge changes in human lifespan, as well as brain size, despite our very unape-like meat-rich diets," Finch said. "Drugs being developed to alter activities of apoE4 may also enhance lifespan of apoE4 carriers."

Support was provided by the National Institute on Aging and the Ellison Medical Foundation.

Athan Bezaitis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>