Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the way to developing a new active ingredient against chronic infections

21.08.2017

Chronic lung infections caused by the bacterium Pseudomonas aeruginosa require complex and, in most cases, long-term treatment with antibiotics—new medication is badly needed. Scientists at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and the German Center for Infection Research (DZIF) are now improving an anti-infective active ingredient with a new mode of action.

The starting point is a substance that can block the pathogenicity of the bacterium and weaken its protective biofilm. The Helmholtz Validation Fund, the DZIF and the Helmholtz Centre for Infection Research (HZI) are contributing a joint investment of 2.7 million euros to improve this class of substance, aiming to achieve a preclinical candidate.


Pseudomonas aeruginosa: feared as a hospital germ

CDC/Janice Haney Carr

“We have high hopes for this drug candidate,” explained Dr Martin Empting, who is conducting the project at the HIPS/HZI together with Prof Rolf Hartmann and Dr Thomas Hesterkamp. Unlike antibiotics, the substance does not kill the bacterium, it disrupts its ability to harm the host and protect itself from the immune system by forming a biofilm. “This pathoblocker also makes the bacterium more vulnerable to parallel treatment with antibiotics,” added Empting.

The active ingredient that attacks the bacterial receptor PqsR (frequently also called “MvfR”), works selectively and specifically against Pseudomonas aeruginosa, thereby sparing other bacteria that could be of use. The bacterium, also feared as a hospital germ, is included on the “Priority Pathogens List” of the WHO as one of the three most important pathogens for developing new active ingredients.

It affects the respiratory and urinary tracts or wounds and triggers dangerous infections that are very difficult to treat. Those frequently affected are patients who suffer from cystic fibrosis – in this case P. aeruginosa causes chronic lung infections that must be kept permanently under control with antibiotics. But also patients who suffer from obstructive respiratory diseases or widened bronchial tubes, so-called bronchiectasis, are not safe from this pathogen. Increasing resistance to antibiotics also makes successful treatment more difficult.

A molecule blocks virulence factors and biofilm structures

The scientists keep both patient groups in mind when improving the structure of their lead compound. As proven in various test systems, the starting molecule has good conditions for becoming a successful active ingredient: The pathoblockers inhibit the function of the PqsR receptor, which plays a key role in the infection of Pseudomonas aeruginosa.

The bacterium uses this receptor to regulate its group-specific virulence and therefore factors that contribute to the severity of the infection. The drug candidate not only suppresses this virulence process, it has also been proven to reduce the mass of biofilm, a matrix formed by pseudomonads to protect the bacteria from attacks by the immune system. When a biofilm is formed, an infection generally becomes chronic and more difficult to treat.

Turning a molecule into a product

Now it’s over to the active ingredient designers. They will change the structure of the molecule until it has the properties necessary for an active ingredient. This includes, for example, a highly effective target structure, high selectivity and good availability at the site of action. The aim of the scientists for the next two years is to develop a pre-clinical candidate that can be enhanced in cooperation or as part of a start-up company. The project also meets the particular demands of DZIF of supporting translational research and paving the way to new medications.

“At the end of the development, we expect to achieve an active ingredient that can be inhaled by patients suffering from chronic lung infections,” explains Empting. The scientists currently see its use as a concomitant treatment to antibiotics as a promising initial application area. “The development of pathoblockers is an important option for controlling the problem of chronic infections that are difficult to treat in the long term,” continues Empting.

Contact:
Prof Rolf Hartmann
Helmholtz Institute for Pharmaceutical Research Saarland and
German Center for Infection Research
T: +49 681 98806 2001
E-mail: rolf.hartmann@helmholtz-hzi.de

Dr Martin Empting
HIPS and DZIF
T: +49 681 98806 2031
E-mail: martin.empting@helmholtz-hzi.de

About the German Center for Infection Research
Approx. 500 scientists from 35 institutes around Germany work together at the German Center for Infection Research (DZIF) to develop new approaches for preventing, diagnosing and treating infectious diseases. The aim is so-called translation—quickly and effectively implementing research results into clinical practice. Thus, the DZIF paves the way for the development of new vaccines, diagnostics and medications against infections.

More information: www.dzif.de

About the Helmholtz Centre for Infection Research and HIPS
Scientists at the Helmholtz Centre for Infection Research (HZI) investigate the mechanisms of infections and their defence. What turns bacteria or viruses into pathogens: understanding this is key to developing new medications and vaccines. The Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) in Saarbrücken is a HZI site that was created together with Saarland University and focuses on active ingredient research. www.helmholtz-hzi.de

Karola Neubert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>