Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene-finding approach yields a new gene linked to key heart attack risk factor

17.03.2014

University of Michigan and Norwegian researchers make discovery by scanning genome for variations in genetic code that change proteins

Scientists have discovered a previously unrecognized gene variation that makes humans have healthier blood lipid levels and reduced risk of heart attacks -- a finding that opens the door to using this knowledge in testing or treatment of high cholesterol and other lipid disorders.

But even more significant is how they found the gene, which had been hiding in plain sight in previous hunts for genes that influence cardiovascular risk.

This region of DNA where it was found had been implicated as being important in controlling blood lipid levels in a report from several members of the same research team in 2008. But although this DNA region had many genes, none of them had any obvious link to blood lipid levels. The promise of an entirely new lipid-related gene took another six years and a new approach to find.

In a new paper in Nature Genetics, a team from the University of Michigan and the Norwegian University of Science and Technology report that they zeroed in on the gene in an entirely new way.

The team scanned the genetic information available from a biobank of thousands of Norwegians, focusing on variations in genes that change the way proteins function. Most of what they found turned out to be already known to affect cholesterol levels and other blood lipids.

But one gene, dubbed TM6SF2, wasn't on the radar at all. In a minority of the Norwegians who carried a particular change in the gene, blood lipid levels were much healthier and they had a lower rate of heart attack. And when the researchers boosted or suppressed the gene in mice, they saw the same effect on the animals' blood lipid levels.

"Cardiovascular disease presents such a huge impact on people's lives that we should leave no stone unturned in the search for the genes that cause heart attack," says Cristen Willer, Ph.D., the senior author of the paper and an assistant professor of Internal Medicine, Human Genetics and Computational Medicine & Bioinformatics at the U-M Medical School.

"While genetic studies that focused on common variations may explain as much as 30 percent of the genetic component of lipid disorders, we still don't know where the rest of the genetic risk comes from," Willer adds. "This approach of focusing on protein-changing variation may help us zero in on new genes faster."

Willer and Kristian Hveem of the Norwegian University of Science and Technology led the team that published the new result. Intriguingly, Willer and colleagues suggest the same gene may also be involved in regulating lipid levels in the liver -- a finding confirmed by the observations of a team led by Jonathan Cohen and Helen Hobbs, who propose a role for the gene in liver disease in the same issue of Nature Genetics.

Hveem, a gastroenterologist, says that "more research into the exact function of this protein will be needed to understand the role it plays in these two diseases, and whether it can be targeted with new drug therapies to reduce risk -- or treat -- one or both diseases."

The success of the scientific experiment was due to efficient screening of thousands of Norwegian samples and clinical information amassed over a 30-year period by the The Nord-Trøndelag Health Study (HUNT) and the Tromsø Study.

The HUNT Biobank was selected as the "European Research Biobank of the Year" in 2013. Hveem, its managing director, says, "We knew this day would come, when we would see the scientific success stories of decades of labor and tens of thousands of participants donating samples, and it is very rewarding."

Lead author on the study, Oddgeir Holmen of Norwegian University of Science and Technology, adds, "These are exciting times for disease genetics. The combination of large population-based studies and the rapid development in genotyping technologies will probably help us understand a great deal more about cardiovascular disease, and other diseases, in the next few years."

###

Funding:

The HUNT Study is a collaboration between the HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), the Nord-Trøndelag County Council, the Central Norway Health Authority and the Norwegian Institute of Public Health.

Other funding came from the U.S. National Institutes of Health, including grants HL094535, HL117626, HL109946, HL068878 and HL117491 from the National Heart, Lung and Blood Institute, DK062370 from the National Institute of Diabetes and Digestive and Kidney Diseases, and HG007022 from the National Human Genome Research Institute.

Authors: In addition to Willer, Hveem and Holmen, the authors include He Zhang, Yanbo Fan, Daniel H. Hovelson, Ellen M Schmidt, Wei Zhou, Yanhong Guo, Ji Zhang, Arnulf Langhammer, Maja-Lisa Løchen, Santhi K. Ganesh, Lars Vatten, Frank Skorpen, Håvard Dalen, Jifeng Zhang, Subramaniam Pennathur, Jin Chen, Carl Platou, Ellisiv B. Mathiesen, Tom Wilsgaard, Inger Njølstad, Michael Boehnke, Y Eugene Chen, and Gonçalo R Abecasis, the director of the Center for Statistical Genetics at the U-M School of Public Health.

Reference: Nature Genetics, 10.1038/ng.2926

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>