Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Our Normal Genetics May Influence Cancer Growth, Too

The genes we possess not only determine the color of our eyes and hair and how our bodies grow, they might also influence the changes that occur in tumors when we develop cancer.

A study by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that our normal genetic background – the genetic variations that we inherit – contributes to the kinds of DNA changes that occur in tumor cells as cancer develops.

The researchers compared multiple independent tumors from people with a form of skin cancer called squamous cell carcinoma (SCC) for losses and gains of DNA in tumor cells. They found that the pattern of these changes is quite similar in tumors from the same person but quite different in tumors from different individuals.

The findings, published in a recent issue of PLoS Genetics, may offer a new way to identify individuals at greater risk for developing cancer, the researchers say.

... more about:
»Cancer »DNA »Genetics »OSUCCC »SCC »genetic variation »tumor cells

“Our data strongly support the idea that an individual’s normal genetic constitution can strongly influence the genetic changes that occur when a person develops cancer,” says study leader Amanda Toland, assistant professor of medicine and a specialist in the genetics of cancer susceptibility at the OSUCCC – James.

“They may also provide another strategy to identify genetic variations within healthy individuals that may increase their odds of developing cancer,” she adds.

Toland and her collaborators analyzed 222 SCC tumors from 135 organ transplant recipients, who as a group are 65 to 250 times more likely to develop SCC than people in the general population. The researchers examined three or more separate tumors from 25 of these individuals.

They compared the genetic profiles of tumors from the same individual with those from other individuals for DNA copy number changes.

They found that the changes in SCCs from the same patient were statistically similar but significantly different when compared with other patients. They also found that in some cases a particular kind of genetic change is preferentially selected in tumors from the same individual.

“Overall,” Toland says, “our findings provide strong evidence that an individual’s genetic background plays a key role in driving the changes that occur in tumors during cancer development.”

Funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the American Cancer Society supported this research.

Other researchers involved in this study were Amy M. Dworkin, Dawn C. Allain and O. Hans Iwenofu of Ohio State University; Katie Ridd, Ritu Roy and Boris C. Bastian of University of California San Francisco; and Dianne Bautista, Singapore Clinical Research Institute, Singapore.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward | EurekAlert!
Further information:

Further reports about: Cancer DNA Genetics OSUCCC SCC genetic variation tumor cells

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>