Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Normal Genetics May Influence Cancer Growth, Too

11.11.2010
The genes we possess not only determine the color of our eyes and hair and how our bodies grow, they might also influence the changes that occur in tumors when we develop cancer.

A study by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that our normal genetic background – the genetic variations that we inherit – contributes to the kinds of DNA changes that occur in tumor cells as cancer develops.

The researchers compared multiple independent tumors from people with a form of skin cancer called squamous cell carcinoma (SCC) for losses and gains of DNA in tumor cells. They found that the pattern of these changes is quite similar in tumors from the same person but quite different in tumors from different individuals.

The findings, published in a recent issue of PLoS Genetics, may offer a new way to identify individuals at greater risk for developing cancer, the researchers say.

... more about:
»Cancer »DNA »Genetics »OSUCCC »SCC »genetic variation »tumor cells

“Our data strongly support the idea that an individual’s normal genetic constitution can strongly influence the genetic changes that occur when a person develops cancer,” says study leader Amanda Toland, assistant professor of medicine and a specialist in the genetics of cancer susceptibility at the OSUCCC – James.

“They may also provide another strategy to identify genetic variations within healthy individuals that may increase their odds of developing cancer,” she adds.

Toland and her collaborators analyzed 222 SCC tumors from 135 organ transplant recipients, who as a group are 65 to 250 times more likely to develop SCC than people in the general population. The researchers examined three or more separate tumors from 25 of these individuals.

They compared the genetic profiles of tumors from the same individual with those from other individuals for DNA copy number changes.

They found that the changes in SCCs from the same patient were statistically similar but significantly different when compared with other patients. They also found that in some cases a particular kind of genetic change is preferentially selected in tumors from the same individual.

“Overall,” Toland says, “our findings provide strong evidence that an individual’s genetic background plays a key role in driving the changes that occur in tumors during cancer development.”

Funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the American Cancer Society supported this research.

Other researchers involved in this study were Amy M. Dworkin, Dawn C. Allain and O. Hans Iwenofu of Ohio State University; Katie Ridd, Ritu Roy and Boris C. Bastian of University of California San Francisco; and Dianne Bautista, Singapore Clinical Research Institute, Singapore.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer DNA Genetics OSUCCC SCC genetic variation tumor cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>