Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Normal Genetics May Influence Cancer Growth, Too

11.11.2010
The genes we possess not only determine the color of our eyes and hair and how our bodies grow, they might also influence the changes that occur in tumors when we develop cancer.

A study by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that our normal genetic background – the genetic variations that we inherit – contributes to the kinds of DNA changes that occur in tumor cells as cancer develops.

The researchers compared multiple independent tumors from people with a form of skin cancer called squamous cell carcinoma (SCC) for losses and gains of DNA in tumor cells. They found that the pattern of these changes is quite similar in tumors from the same person but quite different in tumors from different individuals.

The findings, published in a recent issue of PLoS Genetics, may offer a new way to identify individuals at greater risk for developing cancer, the researchers say.

... more about:
»Cancer »DNA »Genetics »OSUCCC »SCC »genetic variation »tumor cells

“Our data strongly support the idea that an individual’s normal genetic constitution can strongly influence the genetic changes that occur when a person develops cancer,” says study leader Amanda Toland, assistant professor of medicine and a specialist in the genetics of cancer susceptibility at the OSUCCC – James.

“They may also provide another strategy to identify genetic variations within healthy individuals that may increase their odds of developing cancer,” she adds.

Toland and her collaborators analyzed 222 SCC tumors from 135 organ transplant recipients, who as a group are 65 to 250 times more likely to develop SCC than people in the general population. The researchers examined three or more separate tumors from 25 of these individuals.

They compared the genetic profiles of tumors from the same individual with those from other individuals for DNA copy number changes.

They found that the changes in SCCs from the same patient were statistically similar but significantly different when compared with other patients. They also found that in some cases a particular kind of genetic change is preferentially selected in tumors from the same individual.

“Overall,” Toland says, “our findings provide strong evidence that an individual’s genetic background plays a key role in driving the changes that occur in tumors during cancer development.”

Funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the American Cancer Society supported this research.

Other researchers involved in this study were Amy M. Dworkin, Dawn C. Allain and O. Hans Iwenofu of Ohio State University; Katie Ridd, Ritu Roy and Boris C. Bastian of University of California San Francisco; and Dianne Bautista, Singapore Clinical Research Institute, Singapore.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer DNA Genetics OSUCCC SCC genetic variation tumor cells

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>