Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Quantifies Low Levels of ‘Heart Attack Risk’ Protein

06.11.2009
Searching for a needle in a haystack may seem futile, but it’s worth it if the needle is a hard-to-detect protein that may identify a person at high risk of a heart attack circulating within a haystack of human serum (liquid component of blood).

C-reactive protein (CRP), a molecule produced by the liver in response to inflammation, normally accounts for less than 1/60,000 of a person’s total serum protein, or about 1 milligram per liter (mg/L) of serum.

Recent evidence suggests that a CRP level between 1 and 3 mg/L indicates a moderate risk of cardiovascular disease while a level greater than 3 mg/L predicts a high risk. A clinical diagnostic procedure known as the high-sensitivity CRP (hsCRP) test has been used to detect higher-than-normal levels of the protein and warn a patient about elevated risk for cardiovascular disease.

However, there is no certified reference material—in this case, a sample of human serum with accurately determined amounts of the CRP for various risk levels—against which the accuracy of methods for measuring CRP can be evaluated. The problem: normal, low-risk of cardiovascular disease CRP levels are so low that even mass spectrometry (a very sensitive technique for separating and identifying molecules based on mass) cannot easily quantify them.

In a recent paper in Analytical Chemistry,* NIST researchers Eric Kilpatrick and David Bunk describe the first steps toward development of a certified reference material that can be used to assess the accuracy of routine clinical laboratory tests for CRP. The researchers accomplished this by isolating the minute amounts (less than 1 mg/L) of CRP circulating at normal levels in serum prior to measurement. Using a protein isolation technique called affinity purification, Kilpatrick and Bunk added polystyrene beads coated with anti-CRP antibodies to normal human serum. The antibodies bind tightly to any circulating CRP, allowing it to be easily removed from solution. The researchers then cleave the purified protein they isolated into its component parts, known as peptides, using enzyme digestion. The peptides are more readily measured by the mass spectrometer, resulting in a very precise determination of the total CRP.

To see if their purification method yields CRP that can serve as a reference material, Kilpatrick and Bunk will next mix purified CRP with genetically engineered CRP containing a heavy isotope of nitrogen (15N) and then run the combined pool through affinity purification, enzyme digestion and mass spectrometry. The peptides with the heavy 15N atoms will be easily detected and precisely quantified by the mass spectrometer. If the measurements for the 15N-tagged peptides compare favorably to those made for the purified serum CRP, then that will validate the use of the affinity purification method for quantifying extremely low levels of the protein. In turn, this validation will clear the way for purified serum CRP derived by the NIST method to be eventually used as a quality control and calibration tool by manufacturers for the hsCRP test.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>