Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST Quantifies Low Levels of ‘Heart Attack Risk’ Protein

Searching for a needle in a haystack may seem futile, but it’s worth it if the needle is a hard-to-detect protein that may identify a person at high risk of a heart attack circulating within a haystack of human serum (liquid component of blood).

C-reactive protein (CRP), a molecule produced by the liver in response to inflammation, normally accounts for less than 1/60,000 of a person’s total serum protein, or about 1 milligram per liter (mg/L) of serum.

Recent evidence suggests that a CRP level between 1 and 3 mg/L indicates a moderate risk of cardiovascular disease while a level greater than 3 mg/L predicts a high risk. A clinical diagnostic procedure known as the high-sensitivity CRP (hsCRP) test has been used to detect higher-than-normal levels of the protein and warn a patient about elevated risk for cardiovascular disease.

However, there is no certified reference material—in this case, a sample of human serum with accurately determined amounts of the CRP for various risk levels—against which the accuracy of methods for measuring CRP can be evaluated. The problem: normal, low-risk of cardiovascular disease CRP levels are so low that even mass spectrometry (a very sensitive technique for separating and identifying molecules based on mass) cannot easily quantify them.

In a recent paper in Analytical Chemistry,* NIST researchers Eric Kilpatrick and David Bunk describe the first steps toward development of a certified reference material that can be used to assess the accuracy of routine clinical laboratory tests for CRP. The researchers accomplished this by isolating the minute amounts (less than 1 mg/L) of CRP circulating at normal levels in serum prior to measurement. Using a protein isolation technique called affinity purification, Kilpatrick and Bunk added polystyrene beads coated with anti-CRP antibodies to normal human serum. The antibodies bind tightly to any circulating CRP, allowing it to be easily removed from solution. The researchers then cleave the purified protein they isolated into its component parts, known as peptides, using enzyme digestion. The peptides are more readily measured by the mass spectrometer, resulting in a very precise determination of the total CRP.

To see if their purification method yields CRP that can serve as a reference material, Kilpatrick and Bunk will next mix purified CRP with genetically engineered CRP containing a heavy isotope of nitrogen (15N) and then run the combined pool through affinity purification, enzyme digestion and mass spectrometry. The peptides with the heavy 15N atoms will be easily detected and precisely quantified by the mass spectrometer. If the measurements for the 15N-tagged peptides compare favorably to those made for the purified serum CRP, then that will validate the use of the affinity purification method for quantifying extremely low levels of the protein. In turn, this validation will clear the way for purified serum CRP derived by the NIST method to be eventually used as a quality control and calibration tool by manufacturers for the hsCRP test.

Michael E. Newman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>