Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST Quantifies Low Levels of ‘Heart Attack Risk’ Protein

Searching for a needle in a haystack may seem futile, but it’s worth it if the needle is a hard-to-detect protein that may identify a person at high risk of a heart attack circulating within a haystack of human serum (liquid component of blood).

C-reactive protein (CRP), a molecule produced by the liver in response to inflammation, normally accounts for less than 1/60,000 of a person’s total serum protein, or about 1 milligram per liter (mg/L) of serum.

Recent evidence suggests that a CRP level between 1 and 3 mg/L indicates a moderate risk of cardiovascular disease while a level greater than 3 mg/L predicts a high risk. A clinical diagnostic procedure known as the high-sensitivity CRP (hsCRP) test has been used to detect higher-than-normal levels of the protein and warn a patient about elevated risk for cardiovascular disease.

However, there is no certified reference material—in this case, a sample of human serum with accurately determined amounts of the CRP for various risk levels—against which the accuracy of methods for measuring CRP can be evaluated. The problem: normal, low-risk of cardiovascular disease CRP levels are so low that even mass spectrometry (a very sensitive technique for separating and identifying molecules based on mass) cannot easily quantify them.

In a recent paper in Analytical Chemistry,* NIST researchers Eric Kilpatrick and David Bunk describe the first steps toward development of a certified reference material that can be used to assess the accuracy of routine clinical laboratory tests for CRP. The researchers accomplished this by isolating the minute amounts (less than 1 mg/L) of CRP circulating at normal levels in serum prior to measurement. Using a protein isolation technique called affinity purification, Kilpatrick and Bunk added polystyrene beads coated with anti-CRP antibodies to normal human serum. The antibodies bind tightly to any circulating CRP, allowing it to be easily removed from solution. The researchers then cleave the purified protein they isolated into its component parts, known as peptides, using enzyme digestion. The peptides are more readily measured by the mass spectrometer, resulting in a very precise determination of the total CRP.

To see if their purification method yields CRP that can serve as a reference material, Kilpatrick and Bunk will next mix purified CRP with genetically engineered CRP containing a heavy isotope of nitrogen (15N) and then run the combined pool through affinity purification, enzyme digestion and mass spectrometry. The peptides with the heavy 15N atoms will be easily detected and precisely quantified by the mass spectrometer. If the measurements for the 15N-tagged peptides compare favorably to those made for the purified serum CRP, then that will validate the use of the affinity purification method for quantifying extremely low levels of the protein. In turn, this validation will clear the way for purified serum CRP derived by the NIST method to be eventually used as a quality control and calibration tool by manufacturers for the hsCRP test.

Michael E. Newman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>