Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH investigators find link between DNA damage and immune response

01.04.2011
Researchers offer the first evidence that DNA damage can lead to the regulation of inflammatory responses, the body's reaction to injury. The proteins involved in the regulation help protect the body from infection.

The study, performed by scientists at the National Institute of Environmental Health Sciences (NIEHS), which is part of the National Institutes of Health, is one of the first studies to come out of the recently established NIEHS Clinical Research Unit (CRU) (http://www.niehs.nih.gov/research/clinical/join/durham/index.cfm).

Appearing in the March 31 issue of PLoS Genetics, the research suggests that an injury to chromosomes alters the expression of a family of genes known as Toll-like receptors (TLRs). TLRs are proteins that play a role in the immune system by defending the body from infection. Following damage, the TLRs interact with the tumor suppressor gene p53 to regulate the amount of inflammation. The NIEHS investigators also establish that the integration of p53 and inflammation only occurs in primates.

Healthy volunteers with informed consent donated their blood cells for the study. The scientists separated white blood cells from the samples and exposed the cells to anti-cancer agents to activate p53. They then examined the expression of TLR genes. The team detected large variations among individuals, but found that p53 generally led to the activation of several TLR genes in patients' cells. They also found that TLR activation could be prevented by adding the p53 inhibitor pifithrin.

"We would not have found this connection if we only worked with rat or mice cells," said Michael Resnick, Ph.D., principal investigator in the Laboratory of Molecular Genetics (LMG) and corresponding author on the paper. "We needed to have human samples, so our collaboration with the CRU was crucial for these experiments."

Stavros Garantziotis, M.D., a principal investigator in the Laboratory of Respiratory Biology (LRB) and the medical director for the CRU, is a co-author on the article. He said that the publication had two main findings: humans evolved an inflammatory response when subjected to DNA damage, and the variation in TLR activity among humans suggests that some people are more prone to inflammation following DNA damage, for example, after receiving cancer therapy.

"Physicians don't have this information now, but understanding who would likely benefit from anti-inflammatory treatment after chemotherapy would greatly increase a doctor's ability to help his or her patient in the future," Garantziotis continued.

As a physician and co-author of the publication, LRB principal investigator Michael Fessler, M.D., went a step further in his explanation of how stimulating the human immune system could treat infection, and autoimmune and environmental diseases.

"The immune system very likely plays a role, not only in all inflammatory diseases that afflict humans, but also in cancer," Fessler concluded. "Because of the new connection discussed in our paper, we may have a new means to manipulate the responses that affect those diseases."

Now, the researchers are taking advantage of another NIEHS translational program, the Environmental Polymorphisms Registry (EPR) (http://www.niehs.nih.gov/research/clinical/join/epr/index.cfm), an ongoing study to collect DNA samples from nearly 20,000 North Carolinians. The EPR study will allow scientists to look for genes linked to disease. The study is a collaborative effort between NIEHS and the General Clinical Research Center at the University of North Carolina at Chapel Hill.

Daniel Menendez, Ph.D., and Maria Shatz, Ph.D., are two LMG scientists who share first authorship on the paper. Menendez added that the EPR work will permit researchers to further examine the association between p53 and inflammation. "In related studies, we are looking at individuals who have genetic alterations in the way they might respond to p53 activation," he said. "We will try to determine if their cells behave differently, and if these subjects have changes in their inflammatory response, or an increased risk for certain inflammatory diseases."

Reference: Menendez D*, Shatz M*, Azzam K, Garantziotis S, Fessler MB, Resnick MA. 2011. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet [Online 31 March 2011]. (*co-first authors)

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Robin Arnette | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>