Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH investigators find link between DNA damage and immune response

01.04.2011
Researchers offer the first evidence that DNA damage can lead to the regulation of inflammatory responses, the body's reaction to injury. The proteins involved in the regulation help protect the body from infection.

The study, performed by scientists at the National Institute of Environmental Health Sciences (NIEHS), which is part of the National Institutes of Health, is one of the first studies to come out of the recently established NIEHS Clinical Research Unit (CRU) (http://www.niehs.nih.gov/research/clinical/join/durham/index.cfm).

Appearing in the March 31 issue of PLoS Genetics, the research suggests that an injury to chromosomes alters the expression of a family of genes known as Toll-like receptors (TLRs). TLRs are proteins that play a role in the immune system by defending the body from infection. Following damage, the TLRs interact with the tumor suppressor gene p53 to regulate the amount of inflammation. The NIEHS investigators also establish that the integration of p53 and inflammation only occurs in primates.

Healthy volunteers with informed consent donated their blood cells for the study. The scientists separated white blood cells from the samples and exposed the cells to anti-cancer agents to activate p53. They then examined the expression of TLR genes. The team detected large variations among individuals, but found that p53 generally led to the activation of several TLR genes in patients' cells. They also found that TLR activation could be prevented by adding the p53 inhibitor pifithrin.

"We would not have found this connection if we only worked with rat or mice cells," said Michael Resnick, Ph.D., principal investigator in the Laboratory of Molecular Genetics (LMG) and corresponding author on the paper. "We needed to have human samples, so our collaboration with the CRU was crucial for these experiments."

Stavros Garantziotis, M.D., a principal investigator in the Laboratory of Respiratory Biology (LRB) and the medical director for the CRU, is a co-author on the article. He said that the publication had two main findings: humans evolved an inflammatory response when subjected to DNA damage, and the variation in TLR activity among humans suggests that some people are more prone to inflammation following DNA damage, for example, after receiving cancer therapy.

"Physicians don't have this information now, but understanding who would likely benefit from anti-inflammatory treatment after chemotherapy would greatly increase a doctor's ability to help his or her patient in the future," Garantziotis continued.

As a physician and co-author of the publication, LRB principal investigator Michael Fessler, M.D., went a step further in his explanation of how stimulating the human immune system could treat infection, and autoimmune and environmental diseases.

"The immune system very likely plays a role, not only in all inflammatory diseases that afflict humans, but also in cancer," Fessler concluded. "Because of the new connection discussed in our paper, we may have a new means to manipulate the responses that affect those diseases."

Now, the researchers are taking advantage of another NIEHS translational program, the Environmental Polymorphisms Registry (EPR) (http://www.niehs.nih.gov/research/clinical/join/epr/index.cfm), an ongoing study to collect DNA samples from nearly 20,000 North Carolinians. The EPR study will allow scientists to look for genes linked to disease. The study is a collaborative effort between NIEHS and the General Clinical Research Center at the University of North Carolina at Chapel Hill.

Daniel Menendez, Ph.D., and Maria Shatz, Ph.D., are two LMG scientists who share first authorship on the paper. Menendez added that the EPR work will permit researchers to further examine the association between p53 and inflammation. "In related studies, we are looking at individuals who have genetic alterations in the way they might respond to p53 activation," he said. "We will try to determine if their cells behave differently, and if these subjects have changes in their inflammatory response, or an increased risk for certain inflammatory diseases."

Reference: Menendez D*, Shatz M*, Azzam K, Garantziotis S, Fessler MB, Resnick MA. 2011. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet [Online 31 March 2011]. (*co-first authors)

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Robin Arnette | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>