Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

News from the ant kingdom

05.09.2012
Many pathogenic bacteria are becoming increasingly resistant to antibiotics.
New agents are needed urgently, and the quest for them is also being extended to the ant world. It is here that Würzburg biologists have now made a new discovery.

Insects, too, have to fight off bacteria. Ants, for example, live in the ground and often feed on the cadavers of other animals, so they inevitably come into very close contact with potentially harmful microorganisms. One way in which they defend themselves is by using small protein molecules, known as antimicrobial peptides, which can kill bacteria.

“Such peptides are found in all living organisms, including humans, and there are many different types of them,” explains Carolin Ratzka from the Biocenter at the University of Würzburg. The doctoral student, working with her mentor, Professor Roy Gross, and other colleagues, has now proven the presence of some of these peptides while characterizing the antimicrobial potential of the carpenter ant (Camponotus floridanus). The researchers discovered a few surprising things that might also have consequences for commonly accepted hypotheses regarding the immune system of social insects.

Peptides in social insects

The genetic material of the fruit fly Drosophila contains the blueprints for some 20 different antimicrobial peptides, and this number is also high in other insects. “Yet, social insects like bees and ants have only very few peptide genes,” says Carolin Ratzka.

This has led some biologists to conclude that bees and their like do not need so many of these deterrents because they practise a kind of social defence: the insects groom each other, separate the sick from the rest of the brood, and keep their nests clean. This might spare them the cost-intensive production of many different defence peptides.

Numerous peptides from a single gene

But the number of antimicrobial peptides is now higher than originally thought, at least in ants, as the Würzburg scientists reveal in the journal PLoS ONE. In the carpenter ant they found a further peptide gene in addition to the two previously known: this has a recurring structure and therefore contains the blueprints for as many as seven antimicrobial peptides. The researchers then examined other ant species as well and found that in one of them the gene can even produce 23 different peptides.

“The individual peptides differ from one another in their sequence, which might have an impact on their efficacy against bacteria,” says Professor Roy Gross. Further studies are now needed to show whether this assumption is correct and which bacteria are targeted by the newly discovered peptides. The Würzburg biologists have every confidence. After all, they are familiar with very similar peptides in honey bees – and these peptides are all capable of combating pathogenic bacteria.

Ratzka C, Förster F, Liang C, Kupper M, Dandekar T, et al. (2012): Molecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus. PLoS ONE 7(8): e43036, 9 August 2012, doi:10.1371/journal.pone.0043036

Contact

Carolin Ratzka, Department of Microbiology, Biocenter at the University of Würzburg, T +49 (0)931 31-88029, carolin.ratzka@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>